High-throughput transparent and flexible electronics are essential technologies for next-generation displays, semiconductors, and wearable bio-medical applications. However, to manufacture a high-quality transparent and flexible electrode, conventional annealing processes generally require 5 min or more at a high temperature condition of 300 °C or higher. This high thermal budget condition is not only difficult to apply to general polymer-based flexible substrates, but also results in low-throughput. Here, we report a high-quality transparent electrode produced with an extremely low thermal budget using Xe-flash lamp rapid photonic curing. Photonic curing is an extremely short time (~ μs) process, making it possible to induce an annealing effect of over 800 °C. The photonic curing effect was optimized by selecting the appropriate power density, the irradiation energy of the Xe-flash lamp, and Ag layer thickness. Rapid photonic curing produced an ITO–Ag–ITO electrode with a low sheet resistance of 6.5 ohm/sq, with a high luminous transmittance of 92.34%. The low thermal budget characteristics of the rapid photonic curing technology make it suitable for high-quality transparent electronics and high-throughput processes such as roll-to-roll.
γ-glycine (GG) was synthesized from α-glycine in an aqueous solution of strontium chloride. A solubility study of the synthesized GG sample was conducted at various temperatures ranging from 30 to 55 °C. The saturated solution of GG was prepared using solubility data, and single crystals of GG were grown over a period of three weeks by the slow evaporation method at room temperature. The grown GG crystals were characterized by single-crystal x-ray diffraction analysis, UV–visible transmittance studies, thermogravimetric/differential thermal analysis studies, dielectric studies and Fourier transform infrared studies. The mechanical behavior of the crystals was assessed by Vickers microhardness measurements. The second-harmonic generation efficiency of the sample was measured using a Nd:YAG laser and the value was observed to be larger than that of potassium dihydrogen orthophosphate (KDP).
New experiments reveal a close connection between the nonadiabatic dynamics of C–I bond fission and HI elimination in the photodissociation of branched iodoalkanes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.