Quantitative nuclear magnetic resonance (qNMR) in combination with metrological weighing is optimised to demonstrate the power of the qNMR measurement method. It is shown that with 1 H-qNMR it is possible to certify the purity of organic reference materials (expressed as mass fraction) with relative expanded uncertainties of \0.1 % for a 95 % confidence interval (k = 2). Following well-defined selection criteria, a set of twelve different chemical compounds is evaluated and certified to serve as internal references for 1 H-qNMR measurements. A series of comparison measurements is made amongst a subset of the selected compounds. The purity of maleic acid is determined by six different 1 H-qNMR measurement series, and all results show full consistency. All the six mean values are covered within the range of ±0.05 %. In two more measurement series, four different nuclei are analysed within the same sample against one calibrator. Even with non-optimised signal intensity ratios and varying signal pattern, a high consistency was obtained. Therefore, the validity and robustness of 1 H-qNMR measurement results are demonstrated. 1 H-qNMR measurement results are directly traceable to a variety of internationally accepted primary reference materials, and therefore, traceability to SI units is obtained. All experiments are performed under ISO/IEC 17025 and ISO Guide 34 accreditation.
Metrological traceability to common references supports the comparability of chemical measurement results produced by different analysts, at various times, and at separate places. Ideally, these references are realizations of base units of the International System of Units (SI). ISO/IEC 17025 (Clause 6.5) states that traceability of measurement results is a necessary attribute of analytical laboratory competence, and as such, has become compulsory in many industries, especially clinical diagnostics and healthcare. Historically, claims of traceability for organic chemical measurements have relied on calibration chains anchored on unique reference materials with linkage to the SI that is tenuous at best. A first-of-its-kind National Institute of Standards and Technology (NIST) reference material, ultrapure and extensively characterized PS1 Benzoic Acid Primary Standard for quantitative NMR (qNMR), serves as a definitive, primary reference (calibrant) that assuredly links the qNMR spectroscopy technique to SI units. As qNMR itself is a favorable method for accurate, direct characterization of chemical reference materials, PS1 is a standard for developing other traceable standards and is intended to establish traceability for the measurement of thousands of organic chemical species. NIST PS1 will play a critical role in directly promoting accuracy and worldwide comparability of measurement results produced by the chemical measurement community, supporting the soundness of clinical diagnostics, food safety and labeling, forensic investigation, drug development, biomedical research, and chemical manufacturing. Confidence in this link to the SI was established through (i) unambiguous identification of chemical structure; (ii) determinations of isotopic composition and molecular weight; (iii) evaluation of the respective molecular amount by multiple primary measurement procedures, including qNMR and coulometry; and (iv) rigorous evaluation of measurement uncertainty using state-of-the-art statistical methods and measurement models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.