The breadcrumbs we leave behind when using our mobile phones—who somebody calls, for how long, and from where—contain unprecedented insights about us and our societies. Researchers have compared the recent availability of large-scale behavioral datasets, such as the ones generated by mobile phones, to the invention of the microscope, giving rise to the new field of computational social science.
The Internet and social media have enabled the mobilization of large crowds to achieve time-critical feats, ranging from mapping crises in real time, to organizing mass rallies, to conducting searchand-rescue operations over large geographies. Despite significant success, selection bias may lead to inflated expectations of the efficacy of social mobilization for these tasks. What are the limits of social mobilization, and how reliable is it in operating at these limits? We build on recent results on the spatiotemporal structure of social and information networks to elucidate the constraints they pose on social mobilization. We use the DARPA Network Challenge as our working scenario, in which social media were used to locate 10 balloons across the United States. We conduct high-resolution simulations for referral-based crowdsourcing and obtain a statistical characterization of the population recruited, geography covered, and time to completion. Our results demonstrate that the outcome is plausible without the presence of mass media but lies at the limit of what time-critical social mobilization can achieve. Success relies critically on highly connected individuals willing to mobilize people in distant locations, overcoming the local trapping of diffusion in highly dense areas. However, even under these highly favorable conditions, the risk of unsuccessful search remains significant. These findings have implications for the design of better incentive schemes for social mobilization. They also call for caution in estimating the reliability of this capability.social networks | human dynamics
Natural disasters affect hundreds of millions of people worldwide every year. Emergency response efforts depend upon the availability of timely information, such as information concerning the movements of affected populations. The analysis of aggregated and anonymized Call Detail Records (CDR) captured from the mobile phone infrastructure provides new possibilities to characterize human behavior during critical events. In this work, we investigate the viability of using CDR data combined with other sources of information to characterize the floods that occurred in Tabasco, Mexico in 2009. An impact map has been reconstructed using Landsat-7 images to identify the floods. Within this frame, the underlying communication activity signals in the CDR data have been analyzed and compared against rainfall levels extracted from data of the NASA-TRMM project. The variations in the number of active phones connected to each cell tower reveal abnormal activity patterns in the most affected locations during and after the floods that could be used as signatures of the floods - both in terms of infrastructure impact assessment and population information awareness. The representativeness of the analysis has been assessed using census data and civil protection records. While a more extensive validation is required, these early results suggest high potential in using cell tower activity information to improve early warning and emergency management mechanisms.Comment: Submitted to IEEE Global Humanitarian Technologies Conference (GHTC) 201
Centralized sanctioning institutions have been shown to emerge naturally through social learning, displace all other forms of punishment and lead to stable cooperation. However, this result provokes a number of questions. If centralized sanctioning is so successful, then why do many highly authoritarian states suffer from low levels of cooperation? Why do states with high levels of public good provision tend to rely more on citizen-driven peer punishment? Here, we consider how corruption influences the evolution of cooperation and punishment. Our model shows that the effectiveness of centralized punishment in promoting cooperation breaks down when some actors in the model are allowed to bribe centralized authorities. Counterintuitively, a weaker centralized authority is actually more effective because it allows peer punishment to restore cooperation in the presence of corruption. Our results provide an evolutionary rationale for why public goods provision rarely flourishes in polities that rely only on strong centralized institutions. Instead, cooperation requires both decentralized and centralized enforcement. These results help to explain why citizen participation is a fundamental necessity for policing the commons.A centuries-old debate exists on how to best govern society and promote cooperation: is cooperation best maintained by a central authority [1,2] or is it better handled by more decentralized forms of governance [3,4]? The debate is still unresolved, and identifying mechanisms that promote cooperation remains one of the most difficult challenges facing society and policymakers today [4].Decentralized, individual sanctioning of non-cooperators (also known as free-riders or defectors) is one of the main tools used by societies to promote and maintain cooperation [5]. Individuals can sanction free-riders implicitly via behavioural reciprocity (as in the case of the highly successful tit-for-tat strategy [6]) or explicitly via costly punishment [7]. Both of these forms of peer punishment have been widely studied using evolutionary models and behavioural experiments [8][9][10]6,11].Recently, however, Sigmund et al. [12] showed that centralized institutions can have an evolutionary advantage over peer punishment because, unlike peer-punishers, these institutions may eliminate 'second-order' free-riding. Second-order free-riders cooperate with other players but they do not pay the cost of punishing defectors and this can allow defectors to re-emerge [13][14][15]. To address this problem, Sigmund et al. present a model of 'pool' punishment, where agents commit resources to a centralized authority that sanctions freeriders [12,16]. Pool punishment avoids the second-order free-rider problem because the centralized authority punishes any individual who does not
Cities are the innovation centers of the US economy, but technological disruptions can exclude workers and inhibit a middle class. Therefore, urban policy must promote the jobs and skills that increase worker pay, create employment, and foster economic resilience. In this paper, we model labor market resilience with an ecologically-inspired job network constructed from the similarity of occupations’ skill requirements. This framework reveals that the economic resilience of cities is universally and uniquely determined by the connectivity within a city’s job network. US cities with greater job connectivity experienced lower unemployment during the Great Recession. Further, cities that increase their job connectivity see increasing wage bills, and workers of embedded occupations enjoy higher wages than their peers elsewhere. Finally, we show how job connectivity may clarify the augmenting and deleterious impact of automation in US cities. Policies that promote labor connectivity may grow labor markets and promote economic resilience.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.