For intraoperative imaging, antibodies labeled with both a radionuclide and a fluorophore may be used to tag the tumor lesion with a radiolabel and a fluorescent signal at high tumor to background ratios. However, labeling antibodies with fluorescent moieties may affect the in vivo behavior of the antibody depending on the dye to antibody substitution ratio. To investigate the optimal substitution ratio for use in dual-modality image-guided surgery, we conjugated three different antibodies, MN-14 (anti-CEACAM5), girentuximab (anti-CAIX), and cetuximab (anti-EGFR), with both diethylene triamine pentaacetic acid (DTPA, for labeling with 111In) and IRdye 800CW at dye to antibody ratios of 0, 1, 1.5, 2, and 3 and assessed in vivo behavior. Biodistribution studies showed that at high dye to antibody ratios, liver uptake of the dual-labeled antibodies increased, whereas tumor uptake decreased. Conversely, very low ratios may not be optimal either because in that case, only a few antibody molecules will be dual-labeled (i.e., contain both a DTPA and an IRDye 800CW moiety), which may complicate interpretation of dual-modality data. The present study shows that, provided that the chelator to antibody ratio is high enough, a dye to antibody ratio in the range of 1 to 1.5 is optimal for antibody-targeted dual-modality imaging applications. However, the optimal configuration is antibody dependent and should be determined for each dual-labeled antibody individually.
Organophosphate (OP) induced seizures are commonly treated with anticholinergics, oximes and anticonvulsants. Inhibition of P-glycoprotein (PgP) has been shown to enhance the efficacy of nerve agent treatment in soman exposed rats. In the present study, the promising effects of the PgP inhibitor tariquidar were investigated in more detail in rats s.c. exposed to 150 μg/kg soman. Treatment with HI-6 and atropine sulfate (125 and 3 mg/kg i.m respectively) was administered 1 min after exposure. Diazepam (0.5 mg/kg i.m.) and/or tariquidar (7.5 mg/kg i.v.) were included either at 1 min or 40 min following onset of seizures. Animals that received tariquidar, in addition to HI-6 and atropine, at 1 min, displayed a rapid normalization of EEG activity and cessation of seizure-associated behaviour. This improvement by addition of tariquidar was even more substantial in animals that also received diazepam, either immediately or delayed. Animals exhibiting lower intensity seizures displayed less severe neuropathology (neuronal loss, microglia activation and astrogliosis), primarily in the piriform cortex, and to a lesser extent amygdala and entorhinal cortex. The present findings suggest that the interaction of tariquidar with atropine may be the decisive factor for enhanced treatment efficacy, given that atropine was previously found to be a PgP substrate. A more thorough understanding of the interactions of nerve agent antidotes, in particular the actions of central anticholinergics with benzodiazepines, could contribute to a future optimization of treatment combinations, particularly those aimed at later stage medical interventions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.