Aims: To introduce a cry gene into microorganisms that naturally colonize the phylloplane of tomato plants to improve the persistence of the Cry proteins for controlling a South American tomato moth (Tuta absoluta, Meyrick, 1917). Methods and Results: A cry1Ab gene isolated from a native Bacillus thuringiensis strain (LM-466), showing a relevant activity against T. absoluta larvae, was cloned into the shuttle vector pHT315 (Arantes and Lereclus 1991). The construct was introduced by electroporation into native Bacillus subtilis and Bacillus licheniformis strains, both natural inhabitants of the tomato phylloplane. Western analysis and toxicity assays against the target larvae proved that the successful expression of the gene was accomplished in host bacteria. Recombinant toxin displayed a similar LC 50 value in comparison to native donor strain LM-466. Both transformed Bacillus survived for at least 45 days on the tomato leaf surface. Conclusions: Plant-associated microorganisms that naturally colonize the phylloplane could be useful as recombinant microbial delivery systems of toxin genes of B. thuringiensis. Significance and Impact of the Study: Modified microorganisms capable of surviving on leaf surfaces for several weeks with insecticidal activity should allow for a reduction in pesticide application.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.