This paper examines the effect that heterogeneous customer orders flows have on exchange rates by using a new, and the largest, proprietary dataset of weekly net order flow segmented by customer type across nine of the most liquid currency pairs. We make several contributions. Firstly, we investigate the extent to which customer order flow can help to explain exchange rate movements over and above the influence of macroeconomic variables. Secondly, we address the issue of whether order flows contain (private) information which explain exchange rates changes. Thirdly, we look at the usefulness of order flow in forecasting exchange rate movements at longer horizons than those generally considered in the microstructure literature. Finally we address the question of whether the out-of-sample exchange rate forecasts generated by order flows can be employed profitably in the foreign exchange markets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.