Soil acidity is an impediment to agricultural production on a significant portion of arable land worldwide. Low productivity of these soils is mainly due to nutrient limitation and the presence of high levels of aluminium (Al), which causes deleterious effects on plant physiology and growth. In response to acidic soil stress, plants have evolved various mechanisms to tolerate high concentrations of Al in the soil solution. These strategies for Al detoxification include mechanisms that reduce the activity of Al3+ and its toxicity, either externally through exudation of Al-chelating compounds such as organic acids into the rhizosphere or internally through the accumulation of Al-organic acid complexes sequestered within plant cells. Additionally, root colonization by symbiotic arbuscular mycorrhizal (AM) fungi increases plant resistance to acidity and phytotoxic levels of Al in the soil environment. In this review, the role of the AM symbiosis in increasing the Al resistance of plants in natural and agricultural ecosystems under phytotoxic conditions of Al is discussed. Mechanisms of Al resistance induced by AM fungi in host plants and variation in resistance among AM fungi that contribute to detoxifying Al in the rhizosphere environment are considered with respect to altering Al bioavailability.
Background: The dynamics of phosphorus (P) in the environment is important for regulating nutrient cycles in natural and managed ecosystems and an integral part in assessing biological resilience against environmental change. Organic P (Po) compounds play key roles in biological and ecosystems function in the terrestrial environment being critical to cell function, growth and reproduction. Scope: We asked a group of experts to consider the global issues associated with Po in the terrestrial environment, methodological strengths and weaknesses, benefits to be gained from understanding the Po cycle, and to set priorities for Po research. Conclusions: We identified seven key opportunities for Po research including: the need for integrated, quality controlled and functionally based methodologies; assessment of stoichiometry with other elements in organic matter; understanding the dynamics of Po in natural and managed systems; the role of microorganisms in controlling Po cycles; the implications of nanoparticles in the environment and the need for better modelling and communication of the research. Each priority is discussed and a statement of intent for the Po research community is made that highlights there are key contributions to be made toward understanding biogeochemical cycles, dynamics and function of natural ecosystems and the management of agricultural systems
Wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.) are major crops cultivated around the world, thus playing a crucial role on human diet. Remarkably, the growing human population requires a significant increase in agricultural production in order to feed everybody. In this context, phosphorus (P) management is a key factor as it is component of organic molecules such as nucleic acids, ATP and phospholipids, and it is the most abundant macronutrient in biomass after nitrogen (N), although being one of the scarcest elements in the lithosphere. In general, P fertilization has low efficiency, as only a fraction of the applied P is acquired by roots, leaving a substantial amount to be accumulated in soil as not readily available P. Breeding for P-efficient cultivars is a relatively low cost alternative and can be done through two mechanisms: i) improving P use efficiency (PUE), and/or ii) P acquisition efficiency (PAE). PUE is related to the internal allocation/mobilization of P, and is usually represented by the amount of P accumulated per biomass. PAE relies on roots ability to acquire P from the soil, and is commonly expressed as the relative difference of P acquired under low and high P availability conditions. In this review, plant adaptations related to improved PAE are described, with emphasis on arbuscular mycorrhizal (AM) symbiosis, which is generally accepted to enhance plant P acquisition. A state of the art (1980–2018) of AM growth responses and P uptake in wheat and barley is made to discuss about the commonly accepted growth promoting effect and P increased uptake by AM fungi and the contrasting evidence about the generally accepted lack of positive responses in both plant species. Finally, the mechanisms by which AM symbiosis can affect wheat and barley PAE are discussed, highlighting the importance of considering AM functional diversity on future studies and the necessity to improve PAE definition by considering the carbon trading between all the directly related PAE traits and its return to the host plant.
Soil compost application is a common soil management practice used by small farmers of Central-South Chile that produces positive effects on soil properties and also promotes presence and activity of arbuscular mycorrhizal fungi (AMF). This fungi form symbiosis with plant roots improving plant nutrition, as well as producing glomalin, a glycoprotein that has been associated with soil aggregation stability. Therefore, the aim of this study was to evaluate, in an Ultisol from Central-South Chile, the effect of different doses of compost on some soil characteristics at the end of the third year of a crop sequence including wheat (Triticum aestivum L.), bean (Phaseolus vulgaris L.), and grassland (Lolium multiflorum Lam. associated with Trifolium repens L.). Studied soil characteristics included chemical (pH, available-P, organic C), biological (C and N biomass, AMF spore number, root colonization percentage, mycelium length, and glomalin content), as well as physical parameters (water holding capacity [WHC], and water stable aggregates [WSA]). Results showed that, in general, compost application increased soil pH, mycorrizal roots, mycelium length, glomalin levels, and WSA. Significant relationships were found between C and N biomass, C biomass and WSA, C biomass and glomalin, WSA and WHC, among others. Results suggest that compost application to this type of soil is a feasible option as a fertilizer substitute, and a way to avoid soil erosion by small local farmers involved in organic agriculture.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.