In mice, the mdr1a and mdr1b genes encode drug-transporting proteins that can cause multidrug resistance in tumor cells by lowering intracellular drug levels. These P-glycoproteins are also found in various normal tissues such as the intestine. Because mdr1b P-glycoprotein is not detectable in the intestine, mice with a homozygously disrupted mdr1a gene [mdr1a(؊͞؊) mice] do not contain functional P-glycoprotein in this organ. We have used these mdr1a(؊͞؊) mice to study the effect of gut P-glycoprotein on the pharmacokinetics of paclitaxel. The area under the plasma concentration-time curves was 2-and 6-fold higher in mdr1a(؊͞؊) mice than in wild-type (wt) mice after i.v. and oral drug administration, respectively. Consequently, the oral bioavailability in mice receiving 10 mg paclitaxel per kg body weight increased from only 11% in wt mice to 35% in mdr1a(؊͞؊) mice. The cumulative fecal excretion (0-96 hr) was markedly reduced from 40% (after i.v. administration) and 87% (after oral administration) of the administered dose in wt mice to below 3% in mdr1a(؊͞؊) mice. Biliary excretion was not significantly different in wt and mdr1a(؊͞؊) mice. Interestingly, after i.v. drug administration of paclitaxel (10 mg͞kg) to mice with a cannulated gall bladder, 11% of the dose was recovered within 90 min in the intestinal contents of wt mice vs. <3% in mdr1a(؊͞؊) mice. We conclude that Pglycoprotein limits the oral uptake of paclitaxel and mediates direct excretion of the drug from the systemic circulation into the intestinal lumen.
No abstract
The non-ionic surfactants Cremophor EL (CrEL; polyoxyethyleneglycerol triricinoleate 35) and polysorbate 80 (Tween) 80; polyoxyethylene-sorbitan-20-monooleate) are widely used as drug formulation vehicles, including for the taxane anticancer agents paclitaxel and docetaxel. A wealth of recent experimental data has indicated that both solubilisers are biologically and pharmacologically active compounds, and their use as drug formulation vehicles has been implicated in clinically important adverse effects, including acute hypersensitivity reactions and peripheral neuropathy.CrEL and Tween 80 have also been demonstrated to influence the disposition of solubilised drugs that are administered intravenously. The overall resulting effect is a highly increased systemic drug exposure and a simultaneously decreased clearance, leading to alteration in the pharmacodynamic characteristics of the solubilised drug. Kinetic experiments revealed that this effect is primarily caused by reduced cellular uptake of the drug from large spherical micellar-like structures with a highly hydrophobic interior, which act as the principal carrier of circulating drug. Within the central blood compartment, this results in a profound alteration of drug accumulation in erythrocytes, thereby reducing the free drug fraction available for cellular partitioning and influencing drug distribution as well as elimination routes. The existence of CrEL and Tween 80 in blood as large polar micelles has also raised additional complexities in the case of combination chemotherapy regimens with taxanes, such that the disposition of several coadministered drugs, including anthracyclines and epipodophyllotoxins, is significantly altered. In contrast to the enhancing effects of Tween 80, addition of CrEL to the formulation of oral drug preparations seems to result in significantly diminished drug uptake and reduced circulating concentrations. The drawbacks presented by the presence of CrEL or Tween 80 in drug formulations have instigated extensive research to develop alternative delivery forms. Currently, several strategies are in progress to develop Tween 80- and CrEL-free formulations of docetaxel and paclitaxel, which are based on pharmaceutical (e.g. albumin nanoparticles, emulsions and liposomes), chemical (e.g. polyglutamates, analogues and prodrugs), or biological (e.g. oral drug administration) strategies. These continued investigations should eventually lead to more rational and selective chemotherapeutic treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.