Biodiesels (fatty acid methyl esters) derived from oleaginous microbes (microalgae, yeast, and bacteria) are being actively pursued as potential renewable substitutes for petroleum diesel. Here, we report the engine performance characteristics of biodiesel produced from a microalgae (Chaetoceros gracilis), a yeast (Cryptococcus curvatus), and a bacteria (Rhodococcus opacus) in a two-cylinder diesel engine outfitted with an eddy current brake dynamometer, comparing the fuel performance to petroleum diesel (#2) and commercial biodiesel from soybeans. Key physical and chemical properties, including heating value, viscosity, density, and cetane index, for each of the microbial-derived biofuels were found to compare favorably to those of soybean biodiesel. Likewise, the horsepower, torque, and brake specific fuel consumption across a range of engine speeds also compared favorably to values determined for soybean biodiesel. Analysis of exhaust emissions (hydrocarbon, CO, CO2, O2, and NO x ) revealed that all biofuels produced significantly less CO and hydrocarbon than petroleum diesel. Surprisingly, microalgae biodiesel was found to have the lowest NO x output, even lower than petroleum diesel. The results are discussed in the context of the fatty acid composition of the fuels and the technical viability of microbial biofuels as replacements for petroleum diesel.
BackgroundOleaginous microorganisms are attractive feedstock for production of liquid biofuels. Direct hydrothermal liquefaction (HTL) is an efficient route that converts whole, wet biomass into an energy-dense liquid fuel precursor, called ‘biocrude’. HTL represents a promising alternative to conventional lipid extraction methods as it does not require a dry feedstock or additional steps for lipid extraction. However, high operating pressure in HTL can pose challenges in reactor sizing and overall operating costs. Through the use of co-solvents the HTL operating pressure can be reduced. The present study investigates low-temperature co-solvent HTL of oleaginous yeast, Cryptococcus curvatus, using laboratory batch reactors.ResultsIn this study, we report the co-solvent HTL of microbial yeast biomass in an isopropanol–water binary system in the presence or absence of Na2CO3 catalyst. This novel approach proved to be effective and resulted in significantly higher yield of biocrude (56.4 ± 0.1 %) than that of HTL performed without a co-solvent (49.1 ± 0.4 %)(p = 0.001). Addition of Na2CO3 as a catalyst marginally improved the biocrude yield. The energy content of the resulting biocrude (~37 MJ kg−1) was only slightly lower than that of petroleum crude (42 MJ kg−1). The HTL process was successful in removing carboxyl groups from fatty acids and creating their associated straight-chain alkanes (C17–C21). Experimental results were leveraged to inform techno-economic analysis (TEA) of the baseline HTL conversion pathway to evaluate the commercial feasibility of this process. TEA results showed a renewable diesel fuel price of $5.09 per gallon, with the HTL-processing step accounting for approximately 23 % of the total cost for the baseline pathway.ConclusionsThis study shows the feasibility of co-solvent HTL of oleaginous yeast biomass in producing an energy-dense biocrude, and hence provides a platform for adding value to the current dairy industry. Co-solvents can be used to lower the HTL temperature and hence the operating pressure. This process results in a higher biocrude yield at a lower HTL temperature. A conceptual yeast HTL biofuel platform suggests the use of a dairy waste stream for increasing the productivity and sustainability of rural areas while providing a new feedstock (yeast) for generating biofuels.Electronic supplementary materialThe online version of this article (doi:10.1186/s13068-015-0345-5) contains supplementary material, which is available to authorized users.
Biodiesel produced from oleaginous microorganisms shows promise in displacing use of petroleum diesel fuel, however, low biodiesel yields and rigorous processing have thwarted largescale commercialization. Here, we report a simple and efficient two-step process for generating biodiesel blends from microbial biomass, which eliminates the need for solvent extractions, distillations, or additional purifications. In the present work, diesel fuel was utilized to extract biodiesel produced from direct transesterification of the yeast, Cryptococcus curvatus, and microalgae, Scenedesmus dimorphus, thus generating a blend of microbial biodiesel and diesel fuel. Up to 93% and 83% of the produced biodiesel is extracted from both yeast and microalgae, respectively, whereas the majority of pigments are excluded. A B20 blend produced from yeast meets key ASTM fuel requirements including flash point, viscosity, sulfur, oxidation stability, and acid number. Integration of experimental data into system models reveals a 25% reduction in the net energy ratio (NER) with the process presented here compared to traditional solvent extraction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.