AI is undergoing a paradigm shift with the rise of models (e.g., BERT, DALL-E, GPT-3) that are trained on broad data at scale and are adaptable to a wide range of downstream tasks. We call these models foundation models to underscore their critically central yet incomplete character. This report provides a thorough account of the opportunities and risks of foundation models, ranging from their capabilities (e.g., language, vision, robotics, reasoning, human interaction) and technical principles (e.g., model architectures, training procedures, data, systems, security, evaluation, theory) to their applications (e.g., law, healthcare, education) and societal impact (e.g., inequity, misuse, economic and environmental impact, legal and ethical considerations). Though foundation models are based on standard deep learning and transfer learning, their scale results in new emergent capabilities, and their effectiveness across so many tasks incentivizes homogenization. Homogenization provides powerful leverage but demands caution, as the defects of the foundation model are inherited by all the adapted models downstream. Despite the impending widespread deployment of foundation models, we currently lack a clear understanding of how they work, when they fail, and what they are even capable of due to their emergent properties. To tackle these questions, we believe much of the critical research on foundation models will require deep interdisciplinary collaboration commensurate with their fundamentally sociotechnical nature.
While maximizing expected return is the goal in most reinforcement learning approaches, risk-sensitive objectives such as conditional value at risk (CVaR) are more suitable for many high-stakes applications. However, relatively little is known about how to explore to quickly learn policies with good CVaR. In this paper, we present the first algorithm for sample-efficient learning of CVaR-optimal policies in Markov decision processes based on the optimism in the face of uncertainty principle. This method relies on a novel optimistic version of the distributional Bellman operator that moves probability mass from the lower to the upper tail of the return distribution. We prove asymptotic convergence and optimism of this operator for the tabular policy evaluation case. We further demonstrate that our algorithm finds CVaR-optimal policies substantially faster than existing baselines in several simulated environments with discrete and continuous state spaces.
How does language model pretraining help transfer learning? We consider a simple ablation technique for determining the impact of each pretrained layer on transfer task performance. This method, partial reinitialization, involves replacing different layers of a pretrained model with random weights, then finetuning the entire model on the transfer task and observing the change in performance. This technique reveals that in BERT, layers with high probing performance on downstream GLUE tasks are neither necessary nor sufficient for high accuracy on those tasks. Furthermore, the benefit of using pretrained parameters for a layer varies dramatically with finetuning dataset size: parameters that provide tremendous performance improvement when data is plentiful may provide negligible benefits in data-scarce settings. These results reveal the complexity of the transfer learning process, highlighting the limitations of methods that operate on frozen models or single data samples.
We introduce Recursive Routing Networks (RRNs), which are modular, adaptable models that learn effectively in diverse environments. RRNs consist of a set of functions, typically organized into a grid, and a meta-learner decision-making component called the router. The model jointly optimizes the parameters of the functions and the meta-learner's policy for routing inputs through those functions. RRNs can be incorporated into existing architectures in a number of ways; we explore adding them to word representation layers, recurrent network hidden layers, and classifier layers. Our evaluation task is natural language inference (NLI). Using the MULTINLI corpus, we show that an RRN's routing decisions reflect the high-level genre structure of that corpus. To show that RRNs can learn to specialize to more fine-grained semantic distinctions, we introduce a new corpus of NLI examples involving implicative predicates, and show that the model components become fine-tuned to the inferential signatures that are characteristic of these predicates. x Routing across examples Weight sharing Possible distribution Orthogonalized Knowledge
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.