Key Points rVIII-SingleChain is a novel rFVIII, designed to have high stability and high binding affinity for VWF. In severe hemophilia A patients, rVIII-SingleChain was well tolerated and resulted in low bleeding rates, when dosed twice per week.
Bronchopulmonary dysplasia (BPD) is a common lung disease of premature infants, with devastating short-and long-term consequences. The pathogenesis of BPD is multifactorial, but all triggers cause pulmonary inflammation. No therapy exists; therefore, we investigated whether the anti-inflammatory interleukin-1 receptor antagonist (IL-1Ra) prevents murine BPD. We precipitated BPD by perinatal inflammation (lipopolysaccharide injection to pregnant dams) and rearing pups in hyperoxia (65% or 85% O 2 ). Pups were treated daily with IL-1Ra or vehicle for up to 28 d. Vehicle-injected animals in both levels of hyperoxia developed a severe BPD-like lung disease (alveolar number and gas exchange area decreased by up to 60%, alveolar size increased up to fourfold). IL-1Ra prevented this structural disintegration at 65%, but not 85% O 2 . Hyperoxia depleted pulmonary immune cells by 67%; however, extant macrophages and dendritic cells were hyperactivated, with CD11b and GR1 (Ly6G/C) highly expressed. IL-1Ra partially rescued the immune cell population in hyperoxia (doubling the viable cells), reduced the percentage that were activated by up to 63%, and abolished the unexpected persistence of IL-1α and IL-1β on day 28 in hyperoxia/vehicle-treated lungs. On day 3, perinatal inflammation and hyperoxia each triggered a distinct pulmonary immune response, with some proinflammatory mediators increasing up to 20-fold and some amenable to partial or complete reversal with IL-1Ra. In summary, our analysis reveals a pivotal role for IL-1α/β in murine BPD and an involvement for MIP (macrophage inflammatory protein)-1α and TREM (triggering receptor expressed on myeloid cells)-1. Because it effectively shields newborn mice from BPD, IL-1Ra emerges as a promising treatment for a currently irremediable disease that may potentially brighten the prognosis of the tiny preterm patients.anti-inflammatory therapy | cytokines | receptor blockade | neonatal immunity
Molybdenum cofactor deficiency (MoCD) is a rare metabolic disorder characterized by severe and rapidly progressive neurologic damage caused by the functional loss of sulfite oxidase, 1 of 4 molybdenum-dependent enzymes. To date, no effective therapy is available for MoCD, and death in early infancy has been the usual outcome. We report here the case of a patient who was diagnosed with MoCD at the age of 6 days. Substitution therapy with purified cyclic pyranopterin monophosphate (cPMP) was started on day 36 by daily intravenous administration of 80 to 160 microg of cPMP/kg of body weight. Within 1 to 2 weeks, all urinary markers of sulfite oxidase (sulfite, S-sulfocysteine, thiosulfate) and xanthine oxidase deficiency (xanthine, uric acid) returned to almost normal readings and stayed constant (>450 days of treatment). Clinically, the infant became more alert, convulsions and twitching disappeared within the first 2 weeks, and an electroencephalogram showed the return of rhythmic elements and markedly reduced epileptiform discharges. Substitution of cPMP represents the first causative therapy available for patients with MoCD. We demonstrate efficient uptake of cPMP and restoration of molybdenum cofactor-dependent enzyme activities. Further neurodegeneration by toxic metabolites was stopped in the reported patient. We also demonstrated the feasibility to detect MoCD in newborn-screening cards to enable early diagnosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.