High-density single nucleotide polymorphism (SNP) genotyping arrays are a powerful tool for studying genomic patterns of diversity, inferring ancestral relationships between individuals in populations and studying marker–trait associations in mapping experiments. We developed a genotyping array including about 90 000 gene-associated SNPs and used it to characterize genetic variation in allohexaploid and allotetraploid wheat populations. The array includes a significant fraction of common genome-wide distributed SNPs that are represented in populations of diverse geographical origin. We used density-based spatial clustering algorithms to enable high-throughput genotype calling in complex data sets obtained for polyploid wheat. We show that these model-free clustering algorithms provide accurate genotype calling in the presence of multiple clusters including clusters with low signal intensity resulting from significant sequence divergence at the target SNP site or gene deletions. Assays that detect low-intensity clusters can provide insight into the distribution of presence–absence variation (PAV) in wheat populations. A total of 46 977 SNPs from the wheat 90K array were genetically mapped using a combination of eight mapping populations. The developed array and cluster identification algorithms provide an opportunity to infer detailed haplotype structure in polyploid wheat and will serve as an invaluable resource for diversity studies and investigating the genetic basis of trait variation in wheat.
Crop populations derived from experimental crosses enable the genetic dissection of complex traits and support modern plant breeding. Among these, multi-parent populations now play a central role. By mixing and recombining the genomes of multiple founders, multi-parent populations combine many commonly sought beneficial properties of genetic mapping populations. For example, they have high power and resolution for mapping quantitative trait loci, high genetic diversity and minimal population structure. Many multi-parent populations have been constructed in crop species, and their inbred germplasm and associated phenotypic and genotypic data serve as enduring resources. Their utility has grown from being a tool for mapping quantitative trait loci to a means of providing germplasm for breeding programmes. Genomics approaches, including de novo genome assemblies and gene annotations for the population founders, have allowed the imputation of rich sequence information into the descendent population, expanding the breadth of research and breeding applications of multi-parent populations. Here, we report recent successes from crop multi-parent populations in crops. We also propose an ideal genotypic, phenotypic and germplasm 'package' that multi-parent populations should feature to optimise their use as powerful community resources for crop research, development and breeding. Over recent years, numerous multi-parent populations (MPPs) have been successfully developed in crops (Huang et al. 2015; Cockram and Mackay 2018). MPPs bring together key genomic, phenotypic and germplasm resources to form a
BackgroundNext-generation sequencing technologies provide new opportunities to identify the genetic components responsible for trait variation. However, in species with large polyploid genomes, such as bread wheat, the ability to rapidly identify genes underlying quantitative trait loci (QTL) remains non-trivial. To overcome this, we introduce a novel pipeline that analyses, by RNA-sequencing, multiple near-isogenic lines segregating for a targeted QTL.ResultsWe use this approach to characterize a major and widely utilized seed dormancy QTL located on chromosome 4AL. It exploits the power and mapping resolution afforded by large multi-parent mapping populations, whilst reducing complexity by using multi-allelic contrasts at the targeted QTL region. Our approach identifies two adjacent candidate genes within the QTL region belonging to the ABA-induced Wheat Plasma Membrane 19 family. One of them, PM19-A1, is highly expressed during grain maturation in dormant genotypes. The second, PM19-A2, shows changes in sequence causing several amino acid alterations between dormant and non-dormant genotypes. We confirm that PM19 genes are positive regulators of seed dormancy.ConclusionsThe efficient identification of these strong candidates demonstrates the utility of our transcriptomic pipeline for rapid QTL to gene mapping. By using this approach we are able to provide a comprehensive genetic analysis of the major source of grain dormancy in wheat. Further analysis across a diverse panel of bread and durum wheats indicates that this important dormancy QTL predates hexaploid wheat. The use of these genes by wheat breeders could assist in the elimination of pre-harvest sprouting in wheat.Electronic supplementary materialThe online version of this article (doi:10.1186/s13059-015-0665-6) contains supplementary material, which is available to authorized users.
BackgroundMeasuring grain characteristics is an integral component of cereal breeding and research into genetic control of seed development. Measures such as thousand grain weight are fast, but do not give an indication of variation within a sample. Other methods exist for detailed analysis of grain size, but are generally costly and very low throughput. Grain colour analysis is generally difficult to perform with accuracy, and existing methods are expensive and involved.ResultsWe have developed a software method to measure grain size and colour from images captured with consumer level flatbed scanners, in a robust, standardised way. The accuracy and precision of the method have been demonstrated through screening wheat and Brachypodium distachyon populations for variation in size and colour.ConclusionBy using GrainScan, cheap and fast measurement of grain colour and size will enable plant research programs to gain deeper understanding of material, where limited or no information is currently available.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.