In-plane bend loss represents the greatest commercial inhibitor to deploying multimode optical waveguides on densely populated electro-optical printed circuit boards (OPCB) as the minimum bend radii currently possible are too large to be practical in common designs. We present a concept and fabrication method for creating novel polymer optical waveguide structures with reduced bend losses to enable higher density routing on an OPCB. These nested core waveguide structures comprise a core surrounded by a thin shell of cladding, which allows for twofold modal containment by first a conventional low refractive index contrast (LIC) boundary followed by a secondary high refractive index contrast (HIC) boundary. The purpose of this is to reduce the in-plane bend losses incurred on tightly routed optical channels, while not incurring prohibitive dispersion, sidewall scattering and optical crosstalk penalties. We have designed and fabricated nested core multimode polymer waveguides, evaluated their performance in comparison to conventional step-index waveguides and simulated these structures using the beam propagation method. Preliminary results are presented of our measurements and simulations.
Widespread adoption of electro-optical circuit boards based on embedded glass waveguide technology would enable seamless optical connectivity from external fiber-optic networks to system embedded optical interconnect architectures. In this paper, we report on the fabrication of planar multimode waveguides within thin glass foils based on a two-step thermal ion exchange process. Novel lamination techniques were developed to allow glass waveguide panels to be reliably integrated into a conventional electronic multilayer printed circuit board. In addition, a complete suite of optical connector technologies were developed to enable both direct fiber-to-board and board-to-board connectivity. We present the design, development, and characterization of a fully integrated connection platform, comprising a 281 × 233 mm 2 multilayer electro-optical backplane with integrated planar glass waveguides, a pluggable connector system, and five pluggable test cards. Both on-card and externally generated 850 and 1310-nm optical test data were conveyed through the connector and waveguide system and characterised for in-system and system-to-system optical connectivity at data rates up to 32 Gb/s per channel exhibiting bit error rates of less than 10 −12 .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.