Glycosylinositol phosphorylceramides (GIPCs) are a class of glycosylated sphingolipids found in plants, fungi, and protozoa. These lipids are abundant in the plant plasma membrane, forming ;25% of total plasma membrane lipids. Little is known about the function of the glycosylated headgroup, but two recent studies have indicated that they play a key role in plant signaling and defense. Here, we show that a member of glycosyltransferase family 64, previously named ECTOPICALLY PARTING CELLS1, is likely a Golgi-localized GIPC-specific mannosyl-transferase, which we renamed GIPC MANNOSYL-TRANSFERASE1 (GMT1). Sphingolipid analysis revealed that the Arabidopsis thaliana gmt1 mutant almost completely lacks mannose-carrying GIPCs. Heterologous expression of GMT1 in Saccharomyces cerevisiae and tobacco (Nicotiana tabacum) cv Bright Yellow 2 resulted in the production of non-native mannosylated GIPCs. gmt1 displays a severe dwarfed phenotype and a constitutive hypersensitive response characterized by elevated salicylic acid and hydrogen peroxide levels, similar to that we previously reported for the Golgi-localized, GIPC-specific, GDP-Man transporter GONST1 (Mortimer et al., 2013). Unexpectedly, we show that gmt1 cell walls have a reduction in cellulose content, although other matrix polysaccharides are unchanged.
The amide bond may be considered as one of the most important chemical building blocks, playing an important role not only in living organisms but in organic chemistry as well. The exact description and precise quantification of the amide bond strength is difficult, requiring a particular type of theoretical investigation. The present paper suggests a novel, yet simple, method toward quantifying amide bond strength on a linear scale, defined as the "amidity scale". This is achieved using the computed enthalpy of hydrogenation (DeltaHH2) of the compound examined. In the present conceptual work, the DeltaHH2 value for dimethylacetamide is used to define perfect amidic character (amidity=+100%), while azaadamantane-2-on represents complete absence of amidic character (amidity=0%). The component DeltaHH2 values were computed at differing levels of theory, providing a computational and quasi-"method-independent" measure of amidity. A total of 29 well-known amides were examined to demonstrate the "scoring" accuracy of this methodology. For the compounds examined, a correlation has been made between the computed amidity percentage and their common COSNAR resonance energy values, proton affinities, and reactivity in a nucleophilic addition reaction. Selected chemical reactions were also studied. It has been shown that the change of the amidity value, during acyl transfer reactions, represents a thermodynamic driving force for the reaction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.