Radiomic model reliability is a central premise for its clinical translation. Presently, it is assessed using test-retest or external data, which, unfortunately, is often scarce in reality. Therefore, we aimed to develop a novel image perturbation-based method (IPBM) for the first of its kind toward building a reliable radiomic model. We first developed a radiomic prognostic model for head-and-neck cancer patients on a training (70%) and evaluated on a testing (30%) cohort using C-index. Subsequently, we applied the IPBM to CT images of both cohorts (Perturbed-Train and Perturbed-Test cohort) to generate 60 additional samples for both cohorts. Model reliability was assessed using intra-class correlation coefficient (ICC) to quantify consistency of the C-index among the 60 samples in the Perturbed-Train and Perturbed-Test cohorts. Besides, we re-trained the radiomic model using reliable RFs exclusively (ICC>0.75) to validate the IPBM. Results showed moderate model reliability in Perturbed-Train (ICC:0.565, 95%CI:0.518-0.615) and Perturbed-Test (ICC:0.596, 95%CI:0.527-0.670) cohorts. An enhanced reliability of the re-trained model was observed in Perturbed-Train (ICC:0.782, 95%CI:0.759-0.815) and Perturbed-Test (ICC:0.825, 95%CI:0.782-0.867) cohorts, indicating validity of the IPBM. To conclude, we demonstated capability of the IPBM toward building reliable radiomic models, providing community with a novel model reliability assessment strategy prior to prospective evaluation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.