Glioblastomas of children and young adults have a median survival of only 12-15months and are clinically and biologically distinct from histologically similar cancers in older adults1. They are defined by highly specific mutations in the gene encoding the histone H3.3 variant H3F3A2, occurring either at or close to key residues marked by methylation for regulation of transcription – K27 and G34. Here we show that the cerebral hemispheric-specific G34 mutation drives a distinct expression signature through differential genomic binding of the K36 trimethylation mark (H3K36me3). The transcriptional program induced recapitulates that of the developing forebrain, and involves numerous markers of stem cell maintenance, cell fate decisions and self-renewal. Critically, H3F3A G34 mutations cause profound upregulation of MYCN, a potent oncogene which is causative of glioblastomas when expressed in the correct developmental context. This driving aberration is selectively targetable in this patient population by inhibiting kinases responsible for stabilisation of the protein.
Intratumoral heterogeneity in human solid tumors represents a major barrier for the development of effective molecular treatment strategies, as treatment efficacies will reflect the molecular variegation in individual tumors. In glioblastoma, the generation of composite genomic profiles from bulk tumor samples has allowed one to map the genomic amplifications of putative genetic drivers and to prioritize therapeutic targeting strategies aimed at eradicating the tumor burden. Notably, amplification of multiple receptor tyrosine kinases (RTK) within a single tumor specimen obtained from patients is frequently observed. In this study, use of a detailed multicolor FISH mapping procedure in pathologic specimens revealed a mutual exclusivity of gene amplification in the majority of glioblastoma tumors examined. In particular, the two most commonly amplified RTK genes, EGFR and PDGFRA, were found to be present in variable proportions across the tumors, with one or the other gene predominating in certain areas of the same specimen. Our findings have profound implications for designing efficacious therapeutic regimens, as it remains unclear that how the cells with different gene amplification events contribute to disease propagation or the response to molecular targeted therapies. Cancer Res; 72(7);
Key Points• Type I IFN therapies can cause a dose-dependent TMA.• Recombinant type I IFN therapies should be stopped at the earliest opportunity in patients who develop TMA.Many drugs have been reported to cause thrombotic microangiopathy (TMA), yet evidence supporting a direct association is often weak. In particular, TMA has been reported in association with recombinant type I interferon (IFN) therapies, with recent concern regarding the use of IFN in multiple sclerosis patients. However, a causal association has yet to be demonstrated. Here, we adopt a combined clinical and experimental approach to provide evidence of such an association between type I IFN and TMA. We show that the clinical phenotype of cases referred to a national center is uniformly consistent with a direct dose-dependent drug-induced TMA. We then show that dosedependent microvascular disease is seen in a transgenic mouse model of IFN toxicity. This includes specific microvascular pathological changes seen in patient biopsies and is dependent on transcriptional activation of the IFN response through the type I interferon a/b receptor (IFNAR). Together our clinical and experimental findings provide evidence of a causal link between type I IFN and TMA. As such, recombinant type I IFN therapies should be stopped at the earliest stage in patients who develop this complication, with implications for risk mitigation. (Blood. 2016;128(24):2824-2833
The Y-box binding protein 1 (YB-1) is upregulated in many human malignancies including glioblastoma (GBM). It is also essential for normal brain development, suggesting that YB-1 is part of a neural stem cell (NSC) network. Here, we show that YB-1 was highly expressed in the subventricular zone (SVZ) of mouse fetal brain tissues but not in terminally differentiated primary astrocytes. Conversely, YB-1 knockout mice had reduced Sox-2, nestin, and musashi-1 expression in the SVZ. Although primary murine neurospheres were rich in YB-1, its expression was lost during glial differentiation. Glial tumors often express NSC markers and tend to loose the cellular control that governs differentiation; therefore, we addressed whether YB-1 served a similar role in cancer cells. YB-1, Sox-2, musashi-1, Bmi-1, and nestin are coordinately expressed in SF188 cells and 9/9 GBM patientderived primary brain tumor-initiating cells (BTIC). Silencing YB-1 with siRNA attenuated the expression of these NSC markers, reduced neurosphere growth, and triggered differentiation via coordinate loss of GSK3-b. Furthermore, differentiation of BTIC with 1% serum or bone morphogenetic protein-4 suppressed YB-1 protein expression. Likewise, YB-1 expression was lost during differentiation of normal human NSCs. Consistent with these observations, YB-1 expression increased with tumor grade (n ¼ 49 cases). YB-1 was also coexpressed with Bmi-1 (Spearmans 0.80, P > 0.001) and Sox-2 (Spearmans 0.66, P > 0.001) based on the analysis of 282 cases of high-grade gliomas. These proteins were highly expressed in 10/15 (67%) of GBM patients that subsequently relapsed. In conclusion, YB-1 correlatively expresses with NSC markers where it functions to promote cell growth and inhibit differentiation. Cancer Res; 71(16); 5569-78. Ó2011 AACR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.