The disease chytridiomycosis is responsible for global amphibian declines. Chytridiomycosis is caused by Batrachochytrium dendrobatidis ( Bd ) and B. salamandrivorans ( Bsal ), fungal pathogens with stationary and transmissible life stages. Establishing methods that quantify growth and survival of both life stages can facilitate research on the pathophysiology and disease ecology of these pathogens. We tested the efficacy of the MTT assay, a colorimetric test of cell viability, and found it to be a reliable method for quantifying the viability of Bd and Bsal stationary life stages. This method can provide insights into these pathogens’ growth and reproduction to improve our understanding of chytridiomycosis.
Background: Emerging infectious diseases (EIDs) are contributing to species die-offs worldwide. We can better understand EIDs by using ecological approaches to study pathogen biology. For example, pathogens are exposed to variable temperatures across daily, seasonal, and annual scales. Exposure to temperature fluctuations may reduce pathogen growth and reproduction, which could affect pathogen virulence, transmission, and environmental persistence with implications for disease. We examined the effect of a variable thermal environment on reproductive life history traits of the fungal pathogen Batrachochytrium dendrobatidis (Bd). Bd causes chytridiomycosis, an emerging infectious disease of amphibians. As a pathogen of ectothermic hosts, Bd can be exposed to large temperature fluctuations in nature. To determine the effect of fluctuating temperatures on Bd growth and reproduction, we collected temperature data from breeding pools of the Yosemite toad (Anaxyrus canorus), a federally threatened species that is susceptible to chytridiomycosis. We cultured Bd under a daily fluctuating temperature regime that simulated Yosemite toad breeding pool temperatures and measured Bd growth, reproduction, fecundity, and viability. Results: We observed decreased Bd growth and reproduction in a diurnally fluctuating thermal environment as compared to cultures grown at constant temperatures within the optimal Bd thermal range. We also found that Bd exhibits temperature-induced trade-offs under constant low and constant high temperature conditions. Conclusions: Our results provide novel insights on variable responses of Bd to dynamic thermal conditions and highlight the importance of incorporating realistic temperature fluctuations into investigations of pathogen ecology and EIDs.
Climate change is increasing variability in precipitation patterns in many parts of the globe. Unpredictable changes in water availability can be particularly challenging for organisms that rely on precipitation-fed water sources for completing their life cycle, such as many amphibian species. Although developmental plasticity can mitigate the impacts of changing environments for some species, this strategy can come at a cost to other fitness-linked traits, such as immune function. We investigated localized variation in the capacity to respond to pond drying and evaluated whether developmental responses induced carry-over effects in disease susceptibility in three leopard frog species (Rana [Lithobates] pipiens and Rana sphenocephala; two populations each, and one population of Rana chiricahuensis). Using mesocosms located near the site of collection (<15 km away) in five regions spanning a latitudinal gradient, we raised tadpoles under simulated fast drying, slow drying, or constant water levels. After metamorphosis, we characterized several aspects of the skin microbiome, immune function, and response to exposure to the fungal pathogen Batrachochytrium dendrobatidis (Bd). Note that for R. chiricahuensis, the only carry-over effect measured was response to Bd exposure, for which we observed no effects of pond drying. We found that developmental plasticity in Emily H. Le Sage and Michel E. B. Ohmer contributed equally to the work reported here.
Temperature is a critically important factor in many infectious disease systems, because it can regulate responses in both the host and the pathogen. White-nose syndrome (WNS) in bats is a severe infectious disease caused by the temperature-sensitive fungus, Pseudogymnoascus destructans ( Pd ). One feature of WNS is an increase in the frequency of arousal bouts (i.e. when bat body temperatures are elevated) in Pd -infected bats during hibernation. While several studies have proposed that increased frequency of arousals may play a role in the pathophysiology of WNS, it is unknown if the temperature fluctuations might mediate Pd growth. We hypothesized that exposure to a high frequency of elevated temperatures would reduce Pd growth due to thermal constraints on the pathogen. We simulated the thermal conditions for arousal bouts of uninfected and infected bats during hibernation (fluctuating from 8 to 25°C at two different rates) and quantified Pd growth in vitro . We found that increased exposure to high temperatures significantly reduced Pd growth. Because temperature is one of the most critical abiotic factors mediating host–pathogen interactions, resolving how Pd responds to fluctuating temperatures will provide insights for understanding WNS in bats and other fungal diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.