The interaction of cecropin P1 (CP1) with Escherichiacoli was investigated to gain insight into the time-dependent antimicrobial action. Biophysical characterizations of CP1 with whole bacterial cells were performed using both fluorescent and colorimetric assays to investigate the role of membrane permeability and lipopolysaccharide (LPS) binding in lytic behavior. The kinetics of CP1 growth inhibition assays indicated a minimal inhibitory concentration (MIC) of 3 microM. Bactericidal kinetics at the MIC indicated rapid killing of E.coli (<30 min). Membrane permeability studies illustrated permeation as a time-dependent event. Maximum permeability at the MIC occurred within 30 min, which correlates to the bactericidal action. Further investigation showed that the immediate permeabilizing action of CP1 is concentration-dependent, which correlates to the concentration-dependent nature of the inhibition assays. At the MIC and above, the immediate permeability was significant enough that the cells could not recover and exhibit growth. Below the MIC, immediate permeability was evident, but the level was insufficient to inhibit growth. Dansyl polymyxin B displacement studies showed LPS binding is essentially the same at all concentrations investigated. However, it does appear that only the immediate interaction is important, because binding continued to increase over time beyond cell viability. Our studies correlated CP1 bactericidal kinetics to membrane permeability suggesting CP1 concentration-dependent killing is driven by the extent of the immediate permeabilizing action of the peptide.
A naturally occurring antimicrobial peptide, SMAP-29, was synthesized with an n-terminal or c-terminal cysteine, termed c_SMAP and SMAP_c, respectively, for site-directed immobilization to superparamagnetic beads. Immobilized SMAP orientation-dependent activity was probed against multiple bacteria of clinical interest including Acinetobacter baumannii, Pseudomonas aeruginosa, Bacillus anthracis sterne and Staphylococcus aureus. A kinetic microplate assay was employed to reveal both concentration and time-dependent activity for elucidation of minimum bactericidal concentration (MBC) and sub-lethal effects. Immobilized SMAP activity was equivalent or reduced compared with soluble SMAP_c and c_SMAP regardless of immobilization orientation, with only one exception. A comparison of immobilized SMAP_c and c_SMAP activity revealed a bacteria-specific potency dependent on immobilization orientation, which was contrary to that seen in solution, wherein SMAP_c was more potent against all bacteria than c_SMAP. Sub-MBC kinetic studies displayed the influence of peptide exposure to the cells with multiple bacteria exhibiting increased susceptibility and efficacy at lower concentrations upon extended exposure (i.e. MBC enhancement). For instances in which complete killing was not achieved, two predominant effects were evident: retardation of growth rate and an increased lag phase. Both effects, seen independently and concomitantly, indicate some degree of induced cellular damage that can serve as a predictor toward eventual cell death. SMAP_c immobilized on glass through standard silanization chemistry was also investigated to ascertain the influence of substrate on activity against select bacteria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.