Extracellular vesicles (EVs) are small lipid vesicles released by either any prokaryotic or eukaryotic cell, or both, with a biological role in cell-to-cell communication. In this work, we characterize the proteomes and nanomechanical properties of EVs released by tissue-culture cell-derived trypomastigotes (mammalian infective stage; (TCT)) and epimastigotes (insect stage; (E)) of Trypanosoma cruzi, the etiologic agent of Chagas disease. EVs of each stage were isolated by differential centrifugation and analyzed using liquid chromatography with tandem mass spectrometry (LC-MS/MS), dynamic light scattering (DLS), nanoparticle tracking analysis (NTA), electron microscopy and atomic force microscopy (AFM). Measurements of zeta-potential were also included. Results show marked differences in the surface molecular cargos of EVs between both stages, with a noteworthy expansion of all groups of trans-sialidase proteins in trypomastigote’s EVs. In contrast, chromosomal locations of trans-sialidases of EVs of epimastigotes were dramatically reduced and restricted to subtelomeric regions, indicating a possible regulatable expression of these proteins between both stages of the parasite. Regarding mechanical properties, EVs of trypomastigotes showed higher adhesion compared to the EVs of epimastigotes. These findings demonstrate the remarkable surface remodeling throughout the life cycle of T. cruzi, which shapes the physicochemical composition of the extracellular vesicles and could have an impact in the ability of these vesicles to participate in cell communication in completely different niches of infection.
Acanthamoeba is a genus of free-living amoebae widely distributed in nature, associated with the development of encephalitis and keratitis. Despite the fact that it is common to find genotype T5 in environmental samples, only a few cases have been associated with clinical cases in humans. The wide distribution of Acanthamoeba, the characteristic of being amphizoic and the severity of the disease motivate researchers to focus on the isolation of these organisms, but also in demonstrating direct and indirect factors that could indicate a possible pathogenic potential. Here, we performed the characterization of the pathogenic potential of an Acanthamoeba T5 isolate collected from a water source in a hospital. Osmo- and thermotolerance, the secretion of proteases and the effect of trophozoites over cell monolayers were analyzed by different methodologies. Additionally, we confirm the secretion of extracellular vesicles (EVs) of this isolate incubated at two different temperatures, and the presence of serine and cysteine proteases in these vesicles. Finally, using atomic force microscopy, we determined some nanomechanical properties of the secreted vesicles and found a higher value of adhesion in the EVs obtained at 37 °C, which could have implications in the parasite´s survival and damaging potential in two different biological environments.
Background Trypanosoma cruzi, the hemoparasite that causes Chagas disease, is divided into six Discrete Typing Units or DTUs: TcI-TcVI plus Tcbat. This genetic diversity is based on ecobiological and clinical characteristics associated with particular populations of the parasite. The main objective of this study was the identification of DTUs in patients with chronic chagasic infections from a mountainous rural community in the eastern region of Panama. Methods A total of 106 patients were tested for Chagas disease with three serological tests (ELISA, rapid test, and Western blot). Molecular diagnosis and DTU typing were carried out by conventional PCRs and qPCR targeting different genomic markers, respectively. As a control sample for the typing, 28 patients suspected to be chagasic from the metropolitan area of Panama City were included. Results Results showed a positivity in the evaluated patients of 42.3% (33/78); high compared to other endemic regions in the country. In the control group, 20/28 (71.43%) patients presented positive serology. The typing of samples from rural patients showed that 78.78% (26/33) corresponded to TcI, while 9.09% (3/33) were mixed infections (TcI plus TcII/V/VI). Seventy-five percent (15/20) of the patients in the control group presented TcI, and in five samples it was not possible to typify the T. cruzi genotype involved. Conclusions These results confirm that TcI is the main DTU of T. cruzi present in chronic chagasic patients from Panama. However, the circulation of other genotypes (TcII/V/VI) in this country is described for the first time. The eco-epidemiological characteristics that condition the circulation of TcII/V/VI, as well as the immune and clinical impact of mixed infections in this remote mountainous region should be investigated, which will help local action programs in the surveillance, prevention, and management of Chagas disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.