As Processing-In-Memory (PIM) hardware matures and starts making its way into normal compute platforms, software has an important role to play in determining what to perform where, and when, on such heterogeneous systems. Taking an emerging class of PIM hardware which provisions a general purpose (RISC-V) processor at each memory bank, this paper takes on this challenging problem by developing a software compilation framework. This framework analyzes several application characteristics -parallelizability, vectorizability, data set sizes, and offload costs -to determine what, whether, when and how to offload computations to the PIM engines. In the process, it also proposes a vector engine extension to the bank-level RISC-V cores. Using several off-the-shelf C/C++ applications, we demonstrate that PIM is not always a panacea, and a framework such as ours is essential in carefully selecting what needs to be performed where, when and how. The choice of hardware platforms -number of memory banks, relative speeds and capabilities of host CPU and PIM cores, can further impact the "to PIM or not" question. CCS CONCEPTS• Computer systems organization → Heterogeneous (hybrid) systems; • Hardware → Emerging architectures; Emerging languages and compilers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.