The non-standard opto-electronic oscillator (OEO) operation is discussed in the generation mode of a single-side optical harmonic on the base of external and internal modulation of the laser signal. The OEO mathematical model is formed basing on laser differential equations for the closed radiofrequency network. With the help of the model offered, the phase noise of OEO radiofrequency oscillations is analyzed. It is shown that phase noise reduction in the circuit with external modulation depends not only on the increased laser power and growth of the geometric length of the optical fiber, but on reduction of the laser phase noise.
The autonomous optoelectronic generator (OEO) is considered in the chapter as a source of low-noise oscillations. Differential equations are considered and methods with OEO modulation with direct and external modulation are analyzed. The complexity of both approaches is related to the non-standard way of description of the nonlinear method modulation for the internal (direct) structure and the utilization of the specific Mach-Zehnder modulator for the first stage on external modulation. The purpose of the presentation is to consider the main features of OEO as a low-noise generator. This includes consideration based on the study of differential equations, the study of transients in OEO, and the calculation of phase noise. It is shown that different types of fibers with low losses at small bending radii can be used as a FOLD in OEO. The important role of the choice of a coherent laser for OEO with a small spectral line width is shown. The prospects of using structured fibers with low losses at bends of less than 10 mm in OEO are described. The results of modeling dynamic processes in OEO with direct modulation are presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.