Tetanus toxin injected intramuscularly induced no significant changes in the levels of glycine, GABA, glutamate, glutamine or aspartate in extracts of spinal cord from rats killed at timed intervals during the development of local and generalized tetanus. The amino acid contents in the hemisegment (longitudinal one‐half) of the spinal cord (L2‐L6) on the injected side (left gastrocnemius muscle) did not differ significantly from the contents in the hemisegment of the spinal cord on the non‐injected side. Nor were there any consistent changes in the contents of the amino acids in either hemisegment of the spinal cord as the tetanic symptoms became progressively more severe. Hence, the amino acid pool in the spinal cord was relatively stable despite the metabolic changes known to occur in tetanus. Our observations are consistent with the view of Johnston, De Groat and CURTIS (1969) who suggested that if glycine were indeed a spinal inhibitory neurotransmitter released by interneurons affected by tetanus toxin, the toxin should interfere with the release of the amino acid rather than deplete the transmitter stores.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.