Literature analysis and chemical considerations of biological phosphate solubilization have shown that the commonly used selection factor for this trait, tricalcium phosphate (TCP), is relatively weak and unreliable as a universal selection factor for isolating and testing phosphate-solubilizing bacteria (PSB) for enhancing plant growth. Most publications describing isolation of PSB employed TCP. The use of TCP usually yields many (up to several thousands per study) isolates "supposedly" PSB.When these isolates are further tested for direct contribution of phosphorus to the plants, only a very few are true PSB.Other compounds are also tested, but on a very small scale. These phosphates (P), mainly Fe-P, Al-P, and several Ca-P, are even less soluble than TCP in water. Because soils greatly vary by pH and several chemical considerations, it appears that there is no metal-P compound that can serve as the universal selection factor for PSB. A practical approach is to use a combination of two or three metal-P compounds together or in tandem, according to the end use of these bacteria-Ca-P compounds (including rock phosphates) for alkaline soils, Fe-P and Al-P compounds for acidic soils, and phytates for soils rich in organic P. Isolates with abundant production of acids will be isolated. This approach will reduce the number of potential PSB from numerous isolates to just a few. Once a potential isolate is identified, it must be further tested for direct contribution to P plant nutrition and not necessarily to general growth promotion, as commonly done because promotion of growth, even by PSB, can be the outcome of other mechanisms. Isolates that do not comply with this general sequence of testing should not be declared as PSB.
Plant-growth-promoting rhizobacteria exert beneficial effects on plants through their capacity for nitrogen fixation, phytohormone production, phosphate solubilization, and improvement of the water and mineral status of plants. We suggested that these bacteria may also have the potential to express degradative activity toward glyphosate, a commonly used organophosphorus herbicide. In this study, 10 strains resistant to a 10 mM concentration of glyphosate were isolated from the rhizoplane of various plants. Five of these strains--Alcaligenes sp. K1, Comamonas sp. K4, Azomonas sp. K5, Pseudomonas sp. K3, and Enterobacter cloacae K7--possessed a number of associative traits, including fixation of atmospheric nitrogen, solubilization of phosphates, and synthesis of the phytohormone indole-3-acetic acid. One strain, E. cloacae K7, could utilize glyphosate as a source of P. Gas-liquid chromatography showed that E. cloacae growth correlated with a decline in herbicide content in the culture medium (40% of the initial 5mM content), with no glyphosate accumulating inside the cells. Thin-layer chromatography analysis of the intermediate metabolites of glyphosate degradation found that E. cloacae K7 had a C-P lyase activity and degraded glyphosate to give sarcosine, which was then oxidized to glycine. In addition, strain K7 colonized the roots of common sunflower (Helianthus annuus L.) and sugar sorghum (Sorghum saccharatum Pers.), promoting the growth and development of sunflower seedlings. Our findings extend current knowledge of glyphosate-degrading rhizosphere bacteria and may be useful for developing a biotechnology for the cleanup and restoration of glyphosate-polluted soils.
Modern spectroscopic techniques are highly useful in studying diverse processes in microbial cells related to or incited by environmental factors. Spectroscopic data for whole cells, supramolecular structures or isolated cellular constituents can reflect structural and/or compositional changes occurring in the course of cellular metabolic responses to the effects of pollutants, environmental conditions (stress factors); nutrients, signalling molecules (communication factors), etc. This information on the molecular level, often obtained using non-destructive techniques with minimal sample preparation, is of importance for basic studies on mechanisms of bacterial tolerance to stresses and their impact on bacterial metabolism, as well as for applied multidisciplinary research in the fields related to biotechnology, bioremediation, agriculture, biogeochemistry, etc. In the present communication, some recent examples are reviewed and discussed which illustrate the applicability of Fourier transform infrared (FTIR) spectroscopy for monitoring metabolic changes in soil bacteria, using the examples of intensively studied plant-growth-promoting rhizobacteria of the genusAzospirillum. Compositional and structural changes occurring in whole bacterial cells in response to different stress factors and plant signals, as well as spectroscopic images of relevant biospecific interactions are considered from the viewpoint of the possibilities provided by this versatile and easy-to-use technique and its methodology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.