Spider venom, a factor that has played a decisive role in the evolution of one of the most successful groups of living organisms, is reviewed. Unique molecular diversity of venom components including substances of variable structure (from simple low molecular weight compounds to large multidomain proteins) with different functions is considered. Special attention is given to the structure, properties, and biosynthesis of toxins of polypeptide nature.
Seven novel short linear antimicrobial and cytolytic peptides named latarcins were purified from the venom of the spider Lachesana tarabaevi. These peptides were found to produce lytic effects on cells of diverse origin (Gram-positive and Gramnegative bacteria, erythrocytes, and yeast) at micromolar concentrations. In addition, five novel peptides that share considerable structural similarity with the purified latarcins were predicted from the L. tarabaevi venom gland expressed sequence tag data base. Latarcins were shown to adopt amphipathic ␣-helical structure in membrane-mimicking environment by CD spectroscopy. Planar lipid bilayer studies indicated that the general mode of action was scaled membrane destabilization at the physiological membrane potential consistent with the "carpet-like" model. Latarcins represent seven new structural groups of lytic peptides and share little homology with other known peptide sequences. For every latarcin, a precursor protein sequence was identified. On the basis of structural features, latarcin precursors were split into three groups: simple precursors with a conventional prepropeptide structure; binary precursors with a typical modular organization; and complex precursors, which were suggested to be cleaved into mature chains of two different types.
This study presents purification, activity characterization, and 1 H NMR study of the novel antifungal peptide EcAMP1 from kernels of barnyard grass Echinochloa crus-galli. The peptide adopts a disulfide-stabilized ␣-helical hairpin structure in aqueous solution and thus represents a novel fold among naturally occurring antimicrobial peptides. Micromolar concentrations of EcAMP1 were shown to inhibit growth of several fungal phytopathogens. Confocal microscopy revealed intensive EcAMP1 binding to the surface of fungal conidia followed by internalization and accumulation in the cytoplasm without disturbance of membrane integrity. Close spatial structure similarity between EcAMP1, the trypsin inhibitor VhTI from seeds of Veronica hederifolia, and some scorpion and cone snail toxins suggests natural elaboration of different functions on a common fold.Antimicrobial peptides (AMPs) 4 are a structurally diverse group of generally small, positively charged peptides produced by various living organisms and demonstrating a wide spectrum of antimicrobial activity (1, 2). Natural sources of AMPs range from prokaryotes to higher animals, and their targets include bacteria, fungi, protozoa, and viruses. The mechanism of action of most known AMPs involves their direct or receptor-mediated interaction with microbial membranes (3-5). It has been generally accepted that membrane-disruptive AMPs kill microorganisms by provoking in different ways an increase in plasma membrane permeability. Non-membrane-disruptive peptides have been shown to target cell wall formation or traverse membranes and affect various internal cellular processes, for example, RNA, DNA, and/or protein biosynthesis. Some AMPs can combine disruptive and non-disruptive mechanisms of action (6). Moreover, mechanisms of action of the same peptide may differ depending on the target. Recent studies have also indicated that AMPs are multifunctional molecules; they can interact with host membrane receptors and influence diverse intracellular processes modulating the immune response of the host organism (7,8).Essential variety in detailed mechanisms of action and multifunctionality imply structural diversity among AMPs. The following structural groups are usually recognized: (i) linear peptides that form ␣-helices in contact with membranes; (ii) disulfide-containing with predominance of -structural elements; and (iii) linear non-␣-helix-forming, usually with a high content of certain amino acid residues (1, 2, 9). Most of the approximately 200 AMP spatial structures known at present (see the Antimicrobial Peptide Database v2.26 (10)) fall into one of the first two groups. Further classification is based on unique features in the sequences and/or structures of AMPs. For example, thionins, defensins, nonspecific lipid transfer proteins, and hevein-and knottin-like peptides have been identified in plants (11-13).To characterize the array of AMPs produced by a plant under certain physiological conditions, we have carried out a systematic analysis of these peptides from...
AMPA receptors mediate fast excitatory neurotransmission and are critical for CNS development and function. Calcium-permeable subsets of AMPA receptors are strongly implicated in acute and chronic neurological disorders. However, despite the clinical importance, the therapeutic landscape for specifically targeting them, and not the calcium-impermeable AMPA receptors, remains largely undeveloped. To address this problem, we used cryo-electron microscopy and electrophysiology to investigate the mechanisms by which small-molecule blockers selectively inhibit ion channel conductance in calcium-permeable AMPA receptors. We determined the structures of calcium-permeable GluA2 AMPA receptor complexes with the auxiliary subunit stargazin bound to channel blockers, including the orb weaver spider toxin AgTx-636, the spider toxin analog NASPM, and the adamantane derivative IEM-1460. Our structures provide insights into the architecture of the blocker binding site and the mechanism of trapping, which are critical for development of small molecules that specifically target calcium-permeable AMPA receptors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.