The purpose of this communication is two-fold. We introduce the fragment charge difference (FCD) method to estimate the electron transfer matrix element HDA between a donor D and an acceptor A, and we apply this method to several aspects of hole transfer electronic couplings in π-stacks of DNA, including systems with several donor–acceptor sites. Within the two-state model, our scheme can be simplified to recover a convenient estimate of the electron transfer matrix element HDA=(1−Δq2)1/2(E2−E1)/2 based on the vertical excitation energy E2–E1 and the charge difference Δq between donor and acceptor. For systems with strong charge separation, Δq≳0.95, one should resort to the FCD method. As favorable feature, we demonstrate the stability of the FCD approach for systems which require an approach beyond the two-state model. On the basis of ab initio calculations of various DNA related systems, we compared three approaches for estimating the electronic coupling: the minimum splitting method, the generalized Mulliken–Hush (GMH) scheme, and the FCD approach. We studied the sensitivity of FCD and GMH couplings to the donor–acceptor energy gap and found both schemes to be quite robust; they are applicable also in cases where donor and acceptor states are off resonance. In the application to π-stacks of DNA, we demonstrated for the Watson–Crick pair dimer [(GC),(GC)] how structural changes considerably affect the coupling strength of electron hole transfer. For models of three Watson–Crick pairs, we showed that the two-state model significantly overestimates the hole transfer coupling whereas simultaneous treatment of several states leads to satisfactory results.
We calculated electronic matrix elements for hole transfer between adjacent nucleobases in DNA. Calculations of the matrix elements for intrastrand and interstrand transfer were performed at the Hartree-Fock level employing the 6-31G* and 6-311G** basis sets. The matrix elements for intrastrand hole transfer, for which a wealth of experimental solution data is available, are almost independent of the basis set and exhibit an exponential interbase distance dependence, sensitivity to the donor-acceptor geometry, and dependence on 5′ f 3′ direction base sequence. The calculated intrastrand hole transfer matrix elements between adjacent thymines, v + (T,T) ) 0.16 eV, is in good agreement with the experimental estimate, v + (T,T) ) 0.18 eV, inferred from hole hopping in G + (T) m GGG (m ) 1-3). The features of the nucleobase bridge specificity for superexchange-induced hole hopping between guanines in G + XY...G (X,Y ) T or A) were elucidated, with the prediction of enhanced efficiency of thymine relative to adenine as mediator. Information on superexchangemediated intrastrand and direct interstrand hole hopping between guanine bases was also inferred. Our results for interstrand, adjacent G + G coupling predict the existence of zigzagging pathways for hole hopping, in line with experiment.
A partially incoherent rate theory of long-range charge transfer in deoxyribose nucleic acid Electronic matrix elements for hole transfer between Watson-Crick pairs in desoxyribonucleic acid ͑DNA͒ of regular structure, calculated at the Hartree-Fock level, are compared with the corresponding intrastrand and interstrand matrix elements estimated for models comprised of just two nucleobases. The hole transfer matrix element of the GAG trimer duplex is calculated to be larger than that of the GTG duplex. ''Through-space'' interaction between two guanines in the trimer duplexes is comparable with the coupling through an intervening Watson-Crick pair. The gross features of bridge specificity and directional asymmetry of the electronic matrix elements for hole transfer between purine nucleobases in superstructures of dimer and trimer duplexes have been discussed on the basis of the quantum chemical calculations. These results have also been analyzed with a semiempirical superexchange model for the electronic coupling in DNA duplexes of donor ͑nuclobases͒-acceptor, which incorporates adjacent base-base electronic couplings and empirical energy gaps corrected for solvation effects; this perturbation-theory-based model interpretation allows a theoretical evaluation of experimental observables, i.e., the absolute values of donoracceptor electronic couplings, their distance dependence, and the reduction factors for the intrastrand hole hopping or trapping rates upon increasing the size of the nucleobases bridge. The quantum chemical results point towards some limitations of the perturbation-theory-based modeling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.