Recently we applied randomly amplified polymorphic DNA (RAPD) fingerprinting to detect clonal variability among individual cercariae within daughter sporocysts and rediae of 10 digenean trematodes (Platyhelminthes: Trematoda). The most variable RAPD patterns were obtained for Schistosomatidae representative-avian schistosome Trichobilharzia szidati. In this work, 50 polymorphic DNA fragments of approximately 300-1500 bp from RAPD patterns of individual T. szidati cercariae were cloned and sequenced. As a result genomic DNA sequences (total length of approximately 41,000 bp) revealing clonal variability in T. szidati cercariae were obtained and analyzed. The analysis indicated that these sequences contained tandem, inverted and dispersed repeats as well as regions homological to retroelements of two human parasites, Schistosoma mansoni and S. japonicum. Tandem and inverted repeats constituted 8.9% and 22.1% respectively, while the percentage of dispersed repeats was 21.0%. The average content of these components was 41.7% with the average AT content being 59.0%. About 40% of sequences included regions ranging in length from 96 to 1005 bp which displayed amino acid homology with open reading frame pol products of S. mansoni and S. japonicum retroelements: non-long terminal repeat retrotransposons (nLTRs, 76%), long terminal repeat retrotransposons (LTRs, 14%), and Penelope-like elements (PLEs, 10%). Most of these regions (86.4%) contained frameshifts, gaps, and stop-codons. The largest portion of them was homological to nLTRs of the RTE clade (67%). The number of sequences homologous to the members of CR1 lineage was 7 times smaller (9%). Homology with LTRs of Gypsy/Ty3 and BEL clades was revealed in 5% and 9% of cases respectively. We assume that the repetitive elements including retroelement-like sequences described in the current study may serve as the source of clonal variability detected previously in T. szidati and other digenean trematodes. Such genome regions rapidly accumulate mutations and thus may play an important functional role in the life history of the species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.