We introduce the The Three Hundred project, an endeavour to model 324 large galaxy clusters with full-physics hydrodynamical re-simulations. Here we present the dataset and study the differences to observations for fundamental galaxy cluster properties and scaling relations. We find that the modelled galaxy clusters are generally in reasonable agreement with observations with respect to baryonic fractions and gas scaling relations at redshift z = 0. However, there are still some (model-dependent) differences, such as central galaxies being too massive, and galaxy colours (g −r) being bluer (about 0.2 dex lower at the peak position) than in observations. The agreement in gas scaling relations down to 10 13 h −1 M between the simulations indicates that particulars of the sub-grid modelling of the baryonic physics only has a weak influence on these relations. We also include -where appropriate -a comparison to three semianalytical galaxy formation models as applied to the same underlying dark matter only simulation. All simulations and derived data products are publicly available.observed properties of the Intra-Cluster Medium (ICM), the size of the central brightest cluster galaxy and the number and properties of the satellite galaxies orbiting within a common dark matter envelope. Clusters of galaxies can therefore be considered to be large cosmological laboratories that are useful for pinning down both cosmological parameters and empirical models of astrophysical processes acting across a range of coupled scales.Concerted effort, from both observational and theoretical perspectives, has been devoted to improve our understanding of the formation and evolution of galaxy clusters. On the observational side, multi-wavelength telescopes are
We present an implementation of smoothed particle hydrodynamics (SPH) with improved accuracy for simulations of galaxies and the large-scale structure. In particular, we implement and test a vast majority of SPH improvement in the developer version of GADGET-3. We use the Wendland kernel functions, a particle wake-up time-step limiting mechanism and a time-dependent scheme for artificial viscosity including highorder gradient computation and shear flow limiter. Additionally, we include a novel prescription for time-dependent artificial conduction, which corrects for gravitationally induced pressure gradients and improves the SPH performance in capturing the development of gas-dynamical instabilities.We extensively test our new implementation in a wide range of hydrodynamical standard tests including weak and strong shocks as well as shear flows, turbulent spectra, gas mixing, hydrostatic equilibria and self-gravitating gas clouds. We jointly employ all modifications; however, when necessary we study the performance of individual code modules. We approximate hydrodynamical states more accurately and with significantly less noise than standard GADGET-SPH. Furthermore, the new implementation promotes the mixing of entropy between different fluid phases, also within cosmological simulations.Finally, we study the performance of the hydrodynamical solver in the context of radiative galaxy formation and non-radiative galaxy cluster formation. We find galactic disks to be colder and more extended and galaxy clusters showing entropy cores instead of steadily declining entropy profiles. In summary, we demonstrate that our improved SPH implementation overcomes most of the undesirable limitations of standard GADGET-SPH, thus becoming the core of an efficient code for large cosmological simulations.
We use TheThreeHundred project, a suite of 324 resimulated massive galaxy clusters embedded in a broad range of environments, to investigate (i) how the gas content of surrounding haloes correlates with phase-space position at z = 0, and (ii) to investigate the role that ram pressure plays in this correlation. By stacking all 324 normalised phase-space planes containing 169287 haloes and subhaloes, we show that the halo gas content is tightly correlated with phase-space position. At ∼ 1.5−2 R 200 of the cluster dark matter halo, we find an extremely steep decline in the halo gas content of infalling haloes and subhaloes irrespective of cluster mass, possibly indicating the presence of an accretion shock. We also find that subhaloes are particularly gas-poor, even in the cluster outskirts, which could indicate active regions of ongoing pre-processing. By modelling the instantaneous ram pressure experienced by each halo and subhalo at z = 0, we show that the ram pressure intensity is also well correlated with phase-space position, which is again irrespective of cluster mass. In fact, we show that regions in the phase-space plane with high differential velocity between a halo or subhalo and its local gas environment, are almost mutually exclusive with high halo gas content regions. This suggests a causal link between the gas content of objects and the instantaneous ram pressure they experience, where the dominant factor is the differential velocity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.