Purpose: To analytically and clinically validate microsatellite instability (MSI) detection using cell-free DNA (cfDNA) sequencing. Experimental Design: Pan-cancer MSI detection using Guardant360 was analytically validated according to established guidelines and clinically validated using 1,145 cfDNA samples for which tissue MSI status based on standard-of-care tissue testing was available. The landscape of cfDNA-based MSI across solid tumor types was investigated in a cohort of 28,459 clinical plasma samples. Clinical outcomes for 16 patients with cfDNA MSI-H gastric cancer treated with immunotherapy were evaluated. Results: cfDNA MSI evaluation was shown to have high specificity, precision, and sensitivity, with a limit of detection of 0.1% tumor content. In evaluable patients, cfDNA testing accurately detected 87% (71/82) of tissue MSI-H and 99.5% of tissue microsatellite stable (863/867) for an overall accuracy of 98.4% (934/949) and a positive predictive value of 95% (71/75). Concordance of cfDNA MSI with tissue PCR and next-generation sequencing was significantly higher than IHC. Prevalence of cfDNA MSI for major cancer types was consistent with those reported for tissue. Finally, robust clinical activity of immunotherapy treatment was seen in patients with advanced gastric cancer positive for MSI by cfDNA, with 63% (10/16) of patients achieving complete or partial remission with sustained clinical benefit. Conclusions: cfDNA-based MSI detection using Guar-dant360 is highly concordant with tissue-based testing, enabling highly accurate detection of MSI status concurrent with comprehensive genomic profiling and expanding access to immunotherapy for patients with advanced cancer for whom current testing practices are inadequate. See related commentary by Wang and Ajani, p. 6887
Rapidly evolving RNA viruses continuously produce minority haplotypes that can become dominant if they are drug-resistant or can better evade the immune system. Therefore, early detection and identification of minority viral haplotypes may help to promptly adjust the patient’s treatment plan preventing potential disease complications. Minority haplotypes can be identified using next-generation sequencing, but sequencing noise hinders accurate identification. The elimination of sequencing noise is a non-trivial task that still remains open. Here we propose CliqueSNV based on extracting pairs of statistically linked mutations from noisy reads. This effectively reduces sequencing noise and enables identifying minority haplotypes with the frequency below the sequencing error rate. We comparatively assess the performance of CliqueSNV using an in vitro mixture of nine haplotypes that were derived from the mutation profile of an existing HIV patient. We show that CliqueSNV can accurately assemble viral haplotypes with frequencies as low as 0.1% and maintains consistent performance across short and long bases sequencing platforms.
BackgroundRNA viruses such as HCV and HIV mutate at extremely high rates, and as a result, they exist in infected hosts as populations of genetically related variants. Recent advances in sequencing technologies make possible to identify such populations at great depth. In particular, these technologies provide new opportunities for inference of relatedness between viral samples, identification of transmission clusters and sources of infection, which are crucial tasks for viral outbreaks investigations.ResultsWe present (i) an evolutionary simulation algorithm Viral Outbreak InferenCE (VOICE) inferring genetic relatedness, (ii) an algorithm MinDistB detecting possible transmission using minimal distances between intra-host viral populations and sizes of their relative borders, and (iii) a non-parametric recursive clustering algorithm Relatedness Depth (ReD) analyzing clusters’ structure to infer possible transmissions and their directions. All proposed algorithms were validated using real sequencing data from HCV outbreaks.ConclusionsAll algorithms are applicable to the analysis of outbreaks of highly heterogeneous RNA viruses. Our experimental validation shows that they can successfully identify genetic relatedness between viral populations, as well as infer transmission clusters and outbreak sources.
BackgroundHighly mutable RNA viruses exist in infected hosts as heterogeneous populations of genetically close variants known as quasispecies. Next-generation sequencing (NGS) allows for analysing a large number of viral sequences from infected patients, presenting a novel opportunity for studying the structure of a viral population and understanding virus evolution, drug resistance and immune escape. Accurate reconstruction of genetic composition of intra-host viral populations involves assembling the NGS short reads into whole-genome sequences and estimating frequencies of individual viral variants. Although a few approaches were developed for this task, accurate reconstruction of quasispecies populations remains greatly unresolved.ResultsTwo new methods, AmpMCF and ShotMCF, for reconstruction of the whole-genome intra-host viral variants and estimation of their frequencies were developed, based on Multicommodity Flows (MCFs). AmpMCF was designed for NGS reads obtained from individual PCR amplicons and ShotMCF for NGS shotgun reads. While AmpMCF, based on covering formulation, identifies a minimal set of quasispecies explaining all observed reads, ShotMCS, based on packing formulation, engages the maximal number of reads to generate the most probable set of quasispecies. Both methods were evaluated on simulated data in comparison to Maximum Bandwidth and ViSpA, previously developed state-of-the-art algorithms for estimating quasispecies spectra from the NGS amplicon and shotgun reads, respectively. Both algorithms were accurate in estimation of quasispecies frequencies, especially from large datasets.ConclusionsThe problem of viral population reconstruction from amplicon or shotgun NGS reads was solved using the MCF formulation. The two methods, ShotMCF and AmpMCF, developed here afford accurate reconstruction of the structure of intra-host viral population from NGS reads. The implementations of the algorithms are available at http://alan.cs.gsu.edu/vira.html (AmpMCF) and http://alan.cs.gsu.edu/NGS/?q=content/shotmcf (ShotMCF).
Highly mutable RNA viruses such as influenza A virus, human immunodeficiency virus and hepatitis C virus exist in infected hosts as highly heterogeneous populations of closely related genomic variants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.