Rapid urban development has been widespread in many arid regions of the world during the Anthropocene. Such development has the potential to affect, and be affected by, local and regional dunefield dynamics. While urban design often includes consideration of the wind regime, the potential impact of construction on the surrounding environment is seldom considered and remains poorly understood. In this study, regional airflow modeling during successive stages of urbanization at Maspalomas, Gran Canaria, Spain, indicates significant and progressive flow perturbations that have altered the adjacent dunefield. Significant modifications to the boundary layer velocity, mean wind directionality, turbulence intensity, and sediment flux potential are attributed to the extension of the evolving urban geometry into the internal boundary layer. Two distinct process/response zones were identified: (1) the urban shadow zone where widespread dune stabilization is attributed to the sheltering effect of the urban area on surface wind velocity; and (2) the acceleration zone where airflow is deflected away from the urbanized area, causing an increase in sediment transport potential and surface erosion. Consistent coherent turbulent structures were identified at landform and dunefield scales: counter-rotating vortices develop in the lee-side flow of dune crests and shedding off the buildings on the downwind edge of the urban area. This study illustrates the direct geomorphic impact of urbanization on aeolian dunefield dynamics, a relationship that has received little previous attention. The study provides a template for investigations of the potential impact of urbanization in arid zones.
This study presents measurements of blowout topography obtained with annual terrestrial laser surveys carried out over a three-year period at a single, large bowl blowout located in the Provincelands Dunes section of Cape Cod National Seashore, in Massachusetts. The study blowout was selected because its axis is aligned with northwest winds that dominate the region, and because it was seemingly interacting with a smaller saucer blowout that had recently formed on the southern rim of the primary feature. Assuming that blowouts enlarge both horizontally and vertically in response to the wind regime, the objectives of the study were to determine both the amount of horizontal growth that the blowout experiences annually and the spatial patterns of vertical change that occur within the blowout. Changes to the blowout lobe surrounding the feature were also determined for areas with sparse enough vegetation cover to allow laser returns from the sand surface. The results show that the blowout consistently expanded outward during the three years, with the greatest expansion occurring at its southeast corner, opposite the prevailing winds. The most significant occurrence was the removal, in the first year, of the ridge that separated the two blowouts, resulting in a major horizontal shift of the southern rim of the new combined blowout. This displacement then continued at a lesser rate in subsequent years. The rim also shifted horizontally along the northwest to northeast sections of the blowout. Significant vertical loss occurred along the main axis of the blowout with the greatest loss concentrated along the southeast rim. On the lobe, there were large areas of deposition immediately downwind of the high erosion zones inside the blowout. However, there were also small erosion areas on the lobe, extending downwind from eroding sections of the rim. This study shows that: 1. blowouts can experience significant areal and volumetric changes in short periods of time; 2. significant changes may occur relatively suddenly when adjacent blowouts combine into a single feature; and 3. the sediment transport paths are highly controlled by the topography. The joining of two blowouts not only creates a new larger feature, but it also releases large amounts of sediment that are then distributed across the landscape downwind, creating a potential for major changes to a landscape over the longer term.
Parabolic dunes are widespread aeolian landforms found in a variety of environments. Despite modeling advances and good understanding of how they evolve, there is limited empirical data on their dynamics at short time scales of hours and on how these dynamics relate to their medium‐term evolution. This study presents the most comprehensive data set to date on aeolian processes (airflow and sediment transport) inside a parabolic dune at an event scale. This is coupled with information on elevation changes inside the landform to understand its morphological response to a single wind event. Results are contextualized against the medium‐term (years) allowing us to investigate one of the most persistent conundrums in geomorphology, that of the significance of short‐term findings for landform evolution. Our field data suggested three key findings: (1) sediment transport rates inside parabolic dunes correlate well with wind speeds rather than turbulence; (2) up to several tonnes of sand can move through these landforms in a few hours; and (3) short‐term elevation changes inside parabolic dunes can be complex and different from long‐term net spatial patterns, including simultaneous erosion and accumulation along the same wall. Modeled airflow patterns along the basin were similar to those measured in situ for a range of common wind directions, demonstrating the potential for strong transport during multiple events. Mesoscale analyses suggested that the measured event was representative of the type of events potentially driving significant geomorphic changes over years, with supply‐limiting conditions playing an important role in resultant flux amounts.
A number of studies have measured and numerically modelled near surface wind velocity over a range of aeolian landforms and made suppositions about topographic change and landform evolution. However, the precise measurement and correlation of flow dynamics and resulting topographic change have not yet been fully realized. Here, using repeated high‐resolution terrestrial laser scanning and numerical flow modelling within a bowl blowout, we statistically analyse the relationship between wind speed, vertical wind velocity, turbulent kinetic energy and topographic change over a 33‐day period. Topographic results showed that erosion and deposition occurred in distinct regions within the blowout. Deposition occurred in the upwind third of the deflation basin, where wind flow became separated and velocity and turbulent kinetic energy decreased, and erosion occurred in the downwind third of the deflation basin, where wind flow reattached and aligned with incident wind direction. Statistical analysis of wind flow and topographic change indicated that wind speed had a strong correlation with overall topographic change and that vertical wind velocity (including both positive and negative) displayed a strong correlation with negative topographic change (erosion). Only weak or very weak correlations exist for wind flow parameters and positive topographic change (accretion). This study demonstrates that wind flow modelling using average incident wind conditions can be utilized successfully to identify regions of overall change and erosion for a complex aeolian landform, but not to identify and predict regions where solely accretion will occur. © 2019 John Wiley & Sons, Ltd.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.