1. Small permanent streams are coming under increasing pressure for water abstraction. Although these abstractions might only be required on a short-term basis (e.g. summer time irrigation), the highest demand for water often coincides with seasonal low flows. 2. We constructed weirs and diversions that reduced discharge in three small streams (<4 m width) to test the hypotheses that short-term water abstractions would decrease habitat availability and suitability for invertebrates, resulting in increased invertebrate drift, reduced taxonomic richness and decreased benthic invertebrate densities. 3. We sampled benthic invertebrates, invertebrate drift and periphyton at control (upstream) and impact (downstream) sites on each stream before and during 1 month of discharge reduction. 4. Discharge decreased by an average of 89-98% at impact sites and wetted width decreased by 24-30%. Water depth decreased by 28-64% while velocity decreased by 50-62%. Water conductivity, temperature and dissolved oxygen showed varying responses to flow reduction among the three streams, whereas algal biomass and pH were unaffected in all streams. 5. The densities of invertebrate taxa tended to increase in the impact reaches of these streams, even though invertebrate drift increased at impact sites in the first few days following discharge reduction. There were a higher proportion of mayflies, stoneflies and caddisflies at the impact site on one stream after flow reduction. There were no changes to the number of taxa or species evenness at impact sites. 6. Our results suggest that for these small streams, the response of invertebrates to shortterm discharge reduction was to accumulate in the decreased available area, increasing local invertebrate density.
Assessments of flow reduction in streams often focus on changes to biological communities and in-stream physical characteristics, with little consideration for changes in ecosystem functioning. It is unclear whether functional indicators of ecosystem condition may be useful for assessing the impacts of reduced discharge on small streams. Using weirs and diversions to reduce stream discharge during summer baseflow conditions, we tested the response of leaf breakdown, coarse particulate organic matter (CPOM) retention, and primary production to one month of water abstraction in before-after, control-impact (BACI) designed experiments. Discharge at impact (downstream) reaches decreased by over 85% in each of three small New Zealand streams compared to controls (upstream). There also were decreases in velocity, depth, and wetted width. Sediment cover increased at impact reaches, but there were only small changes to conductivity, pH, and surface water temperature. We installed mesh bags filled with willow leaves in-stream for one month to measure leaf breakdown. Reduced discharge had little influence on leaf breakdown rate in these streams. Travel distances and retention structures for CPOM were evaluated using releases of paper strips and wooden dowelling over a range of discharges. The distance traveled by released CPOM increased with increasing discharge, and the importance of riffles as retention structures increased at lower discharges. We measured the accumulation of chlorophyll a after one month on artificial substrates as an estimate of the relative primary production of control and impact reaches. The differences in chlorophyll a concentrations between control and impact reaches were inconsistent among streams. These ecosystem functions have responded inconsistently to water removal in these streams. However, the strong response of CPOM retention to reduced discharge could complement measures of biological community structure when the influence of reduced discharge is assessed. We recommend further investigation in a wide range of streams to assess the utility of these processes as functional indicators of reduced discharge.
1. Demand for water is increasing and water managers need to know how much they can remove from a stream before there are significant detrimental effects on its biological integrity. Flow reduction alters a number of habitat variables known to be important to aquatic invertebrates such as depth, velocity, temperature and fine sediment accumulation. Some taxa may attempt to use instream refugia to mitigate the effects of flow reduction. 2. We experimentally manipulated flows by constructing weirs and diversions in three small New Zealand streams. Discharge was reduced by 88-96%. We tested the hypothesis that macroinvertebrates would use pools and the hyporheic zone as refugia during shortterm (1-month) periods of reduced flow. 3. We sampled hyporheic invertebrates with colonization chambers and pool invertebrates with kick nets within a before-after, control-impact (BACI) experimental design. A suite of physicochemical parameters was measured concurrently including surface and hyporheic temperatures. 4. Flow reduction significantly decreased velocity (60-69%) in all streams. Depth (18-61%) and wetted width (24-31%) tended to decrease but these changes were not always significant. Sediment cover increased the most in farmland streams (10-80%). Apart from decreasing temperature range (18-26%), flow reduction had little impact on the surface water temperatures. 5. Flow reduction had no impact on the abundance of common pool macroinvertebrates or on the abundance, vertical distribution or community composition of hyporheic macroinvertebrates. 6. Our results suggest that aquatic macroinvertebrates are resistant to short-term, severe flow reduction as long as some water remains.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.