We study turbulent emulsions and the emulsification process in homogeneous isotropic turbulence (HIT) using direct numerical simulations (DNS) in combination with the volume of fluid method (VOF). For generating a turbulent flow field, we employ a linear forcing approach augmented by a proportional‐integral‐derivative (PID) controller, which ensures a constant turbulent kinetic energy for two phase flow scenarios and accelerates the emulsification process. For the simulations, the density ratio of dispersed and carrier phases is chosen to be similar to that of oil and water (0.9), representing a typical application. We vary the turbulence intensity and the surface tension coefficient. Thus, we modulate those parameters that directly affect the Hinze scale, which is expected to be the most stable maximum droplet diameter in emulsions in HIT. The considered configurations can be characterized with Taylor Reynolds numbers in the range of 100–140 and Weber numbers, evaluated with the velocity fluctuations and the integral length scale, of 4–70. Using the 3‐D simulation results, we study the emulsification process as well as the emulsions at a statistically stationary state. For the latter, droplet size distributions are evaluated and compared. We observe a Hinze scale similarity of the size distributions considering a fixed integral length scale, that is, similar Hinze scales obtained at different turbulence intensities or for different fluid properties result in similar distributions.
We study the segregation of emulsions in decaying turbulence using direct numerical simulations in combination with the volume of fluid method. To this end, we generate emulsions in forced homogeneous isotropic turbulence and then turn the forcing off and activate the gravitational acceleration. This allows us to study the segregation process in decaying turbulence and under gravity. We consider non-iso-density emulsions, where the dispersed phase is the lighter one. The segregation process is driven by both the minimization of the potential energy achieved by the sinking of the heavier phase as well as the minimization of the surface energy achieved by coalescence. To study these two processes and their impacts on the segregation progress in detail, we consider different buoyancy forces and surface tension coefficients in our investigation, resulting in five different configurations. The surface tension coefficient also alters the droplet size distribution of the emulsion. Using the three-dimensional simulation results and the monitored data, we analyze the driving mechanisms and their impact on the segregation progress in detail. We propose a dimensionless number that reflects the energy release dominating the segregation. Moreover, we evaluate the time required for the rise of the lighter phase and study correlations with the varied parameters: gravitational acceleration and surface tension coefficient.
Mixing under high pressure conditions plays a central role in several engineering applications, such as direct-injection engines and liquid rocket engines. Numerical flow simulations have become a complementary tool to study the mixing process under these conditions but require complex thermodynamic modeling as well as validation with accurate experimental data. For this reason, we use experiments of supercritical single-phase jet mixing from the literature, where the mixing is quantified by the mixture speed of sound, as a reference for our work. We here focus on the thermodynamic modeling of multi-component flows under high pressure conditions and the analytical calculation of the mixture speed of sound. Our thermodynamic model is based on cubic equations of state extended for multi-components. Using an extension of OpenFOAM, we perform large-eddy simulations of hexane and pentane injections and compare our results with the experimentally measured mixture speed of sound at specific positions. The simulation results show the same characteristic trends, indicating that the mixing effects are well reproduced in the simulations. Additionally, the effect of the sub-grid scale modeling is assessed by comparing results using different models (Smagorinsky, Vreman, and Wall-Adapting Local Eddy-viscosity). The comprehensive simulation data presented here, in combination with the experimental data, provide a benchmark for numerical simulations of jet mixing in high pressure conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.