CRISPR (clustered regularly interspaced short palindromic repeats), an ancient defense mechanism used by prokaryotes to cleave nucleic acids from invading viruses and plasmids, is currently being harnessed by researchers worldwide to develop new point-of-need diagnostics. In CRISPR diagnostics, a CRISPR RNA (crRNA) containing a “spacer” sequence that specifically complements with the target nucleic acid sequence guides the activation of a CRISPR effector protein (Cas13a, Cas12a or Cas12b), leading to collateral cleavage of RNA or DNA reporters and enormous signal amplification. CRISPR function can be disrupted by some types of sequence mismatches between the spacer and target, according to previous studies. This poses a potential challenge in the detection of variable targets such as RNA viruses with a high degree of sequence diversity, since mismatches can result from target variations. To cover viral diversity, we propose in this study that during crRNA synthesis mixed nucleotide types (degenerate sequences) can be introduced into the spacer sequence positions corresponding to viral sequence variations. We test this crRNA design strategy in the context of the Cas13a-based SHERLOCK (specific high-sensitivity enzymatic reporter unlocking) technology for detection of Crimean–Congo hemorrhagic fever virus (CCHFV), a biosafety level 4 pathogen with wide geographic distribution and broad sequence variability. The degenerate-sequence CRISPR diagnostic proves functional, sensitive, specific and rapid. It detects within 30–40 minutes 1 copy/μl of viral RNA from CCHFV strains representing all clades, and from more recently identified strains with new mutations in the CRISPR target region. Also importantly, it shows no cross-reactivity with a variety of CCHFV-related viruses. This proof-of-concept study demonstrates that the degenerate sequence-based CRISPR diagnostic is a promising tool of choice for effective detection of highly variable viral pathogens.
Neutralization studies play an important role in providing guidance and justification for vaccine administration and helping prevent the spread of diseases. The neutralization data generated in our laboratory have been included in the decision-making process of the National Advisory Committee on Immunization (NACI) in Canada.
SARS-CoV-2 virus spike (S) protein is an envelope protein responsible for binding to the ACE2 receptor, driving subsequent entry into host cells. The existence of multiple disulfide bonds in the S protein makes it potentially susceptible to reductive cleavage. Using a tri-part split luciferase-based binding assay, we evaluated the impacts of chemical reduction on S proteins from different virus variants and found that those from the Omicron family are highly vulnerable to reduction. Through manipulation of different Omicron mutations, we found that alterations in the receptor binding module (RBM) are the major determinants of this vulnerability. Specifically we discovered that Omicron mutations facilitate the cleavage of C480-C488 and C379-C432 disulfides, which consequently impairs binding activity and protein stability. The vulnerability of Omicron S proteins suggests a mechanism that can be harnessed to treat specific SARS-CoV-2 strains.
While molecular diagnostics generally require heating elements that supply high temperatures such as 95 °C in polymerase chain reaction and 60–69 °C in loop-mediated isothermal amplification, the recently developed CRISPR-based SHERLOCK (specific high-sensitivity enzymatic reporter unlocking) platform can operate at 37 °C or a similar ambient temperature. This unique advantage may be translated into highly energy-efficient or equipment-free molecular diagnostic systems with unrestricted deployability. SHERLOCK is characterized by ultra-high sensitivity when performed in a traditional two-step format. For RNA sensing, the first step combines reverse transcription with recombinase polymerase amplification, while the second step consists of T7 transcription and CRISPR-Cas13a detection. The sensitivity drops dramatically, however, when all these components are combined into a single reaction mixture, and it largely remains an unmet need in the field to establish a high-performance one-pot SHERLOCK assay. An underlying challenge, conceivably, is the extremely complex nature of a one-pot formulation, crowding a large number of reaction types using at least eight enzymes/proteins. Although previous work has made substantial improvements by serving individual enzymes/reactions with accommodating conditions, we reason that the interactions among different enzymatic reactions could be another layer of complicating factors. In this study, we seek optimization strategies by which inter-enzymatic interference may be eliminated or reduced and cooperation created or enhanced. Several such strategies are identified for SARS-CoV-2 detection, each leading to a significantly improved reaction profile with faster and stronger signal amplification. Designed based on common molecular biology principles, these strategies are expected to be customizable and generalizable with various buffer conditions or pathogen types, thus holding broad applicability for integration into future development of one-pot diagnostics in the form of a highly coordinated multi-enzyme reaction system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.