Heart failure (HF) development is characterized by huge structural changes that are crucial for disease progression. Analysis of time dependent global proteomic adaptations during HF progression offers the potential to gain deeper insights in the disease development and identify new biomarker candidates. Therefore, hearts of TAC (transverse aortic constriction) and sham mice were examined by cardiac MRI on either day 4, 14, 21, 28, 42, and 56 after surgery (n = 6 per group/time point). At each time point, proteomes of the left (LV) and right ventricles (RV) of TAC and sham mice were analyzed by mass spectrometry (MS). In TAC mice, systolic LV heart function worsened from day 4 to day 14, remained on a stable level from day 14 to day 42, and showed a further pronounced decline at day 56. MS analysis identified in the LV 330 and in RV 246 proteins with altered abundance over time (TAC vs. sham, fc≥±2). Functional categorization of proteins disclosed the time-dependent alteration of different pathways. Heat shock protein beta-7 (HSPB7) displayed differences in abundance in tissue and serum at an early stage of HF. This study not only provides an overview of the time dependent molecular alterations during transition to HF, but also identified HSPB7 as a novel blood biomarker candidate for the onset of cardiac remodeling.
Background and Purpose
Development and progression of heart failure involve endothelial and myocardial dysfunction as well as a dysregulation of the NO‐sGC‐cGMP signalling pathway. Recently, we reported that the sGC stimulator riociguat has beneficial effects on cardiac remodelling and progression of heart failure in response to chronic pressure overload. Here, we examined if these beneficial effects of riociguat were also reflected in alterations of the myocardial proteome and microRNA profiles.
Experimental Approach
Male C57BL/6N mice underwent transverse aortic constriction (TAC) and sham‐operated mice served as controls. TAC and sham animals were randomised and treated with either riociguat or vehicle for 5 weeks, starting 3 weeks after surgery, when cardiac hypertrophy was established. Afterwards, we performed mass spectrometric proteome analyses and microRNA sequencing of proteins and RNAs, respectively, isolated from left ventricles (LVs).
Key Results
TAC‐induced changes of the LV proteome were significantly reduced by treatment with riociguat. Bioinformatics analyses revealed that riociguat improved TAC‐induced cardiovascular disease‐related pathways, metabolism and energy production, for example, reversed alterations in the levels of myosin heavy chain 7, cardiac phospholamban and ankyrin repeat domain‐containing protein 1. Riociguat also attenuated TAC‐induced changes of microRNA levels in the LV.
Conclusion and Implications
The sGC stimulator riociguat exerted beneficial effects on cardiac structure and function during pressure overload, which was accompanied by a reversal of TAC‐induced changes of the cardiac proteome and microRNA profile. Our data support the potential of riociguat as a novel therapeutic agent for heart failure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.