We report on two-photon coherent control of the biexciton state in single Stranski-Krastanov CdSe quantum dots. Clear interference patterns are observed at twice the optical frequency. The decay of the interference contrast is nonexponential and caused by a dynamical inhomogeneous broadening of the energy levels due to long-term fluctuations in the dot environment.
Two-photon excitation (TPE) profiles of LHCII samples containing different xanthophyll complements were measured in the presumed 11Ag− → 21Ag− (S0 → S1) transition region of xanthophylls. Additionally, TPE profiles of Chls a and b in solution and of WSCP, which does not contain carotenoids, were measured. The results indicate that direct two-photon absorption by Chls in the presumed S0 → S1 transition spectral region of carotenoids is dominant over that of carotenoids, with negligible contributions of the latter. These results suggest the re-evaluation of previously published TPE data obtained with photosynthetic pigment–protein complexes containing (B)Chls and carotenoids.
In addition to (bacterio)chlorophylls, (B)Chls, photosynthetic pigment-protein complexes bind carotenoids (Cars) that fulfil various important functions in which are not fully understood, yet. However, certain excited states of Cars are...
Conventional linear and time-resolved spectroscopic techniques are often not appropriate to elucidate specific pigment-pigment interactions in light-harvesting pigment-protein complexes (LHCs). Nonlinear (laser-) spectroscopic techniques, including nonlinear polarization spectroscopy in the frequency domain (NLPF) as well as step-wise (resonant) and simultaneous (non-resonant) two-photon excitation spectroscopies may be advantageous in this regard. Nonlinear spectroscopies have been used to elucidate substructure(s) of very complex spectra, including analyses of strong excitonic couplings between chlorophylls and of interactions between (bacterio)chlorophylls and "optically dark" states of carotenoids in LHCs, including the major antenna complex of higher plants, LHC II. This article shortly reviews our previous study and outlines perspectives regarding the application of selected nonlinear laser-spectroscopic techniques to disentangle structure-function relationships in LHCs and other pigment-protein complexes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.