Highlights d A pan-tissue AHR signature identifies IL4I1 as a major AHRactivating enzyme d IL4I1-mediated Trp catabolism yields indoles and kynurenic acid that activate the AHR d IL4I1 promotes AHR-driven cancer cell motility and suppresses adaptive immunity d IL4I1 enhances CLL progression and is induced by immune checkpoint blockade
Glutathione (GSH) is a soft nucleophile and, as such, can be used to sense the reactivity of electrophilic agents toward the thiol group and other electron-rich sites of molecular structures. A new kinetic GSH chemoassay is introduced that employs a photometric method to quantify GSH loss and enables an efficient determination of second-order rate constants, k(GSH), of the reaction between electrophilic substances and GSH. Comparison with an existing 2 h static assay shows that the new kinetic variant is superior with respect to the detectable range of electrophilic reactivity and to confounding factors such as additional GSH loss due to oxidation. Analysis of the chemoassay degradation kinetics provides insight into the characteristic reaction times and the contributions of GSH-electrophile Michael addition and GSH oxidation to the overall GSH loss. For 15 alpha,beta-unsaturated ketones, nine acrylates, and two propiolates acting as Michael acceptors, the measured k(GSH) values span ca. 5 orders of magnitude. Moreover, log k(GSH) correlates with the compounds' toxicity toward the ciliates Tetrahymena pyriformis in terms of 48 h log EC(50) (50% growth inhibition) values, yielding a squared correlation coefficient (r(2)) of 0.91 and a root-mean-square error of 0.30 log units. It shows that for these and related compounds, aquatic toxicity is driven by electrophilic reactivity. The findings demonstrate that the kinetic GSH chemoassay can be used as an efficient tool to analyze, interpret, and predict correspondingly reactive toxicity in the context of qualitative and quantitative structure-activity relationship studies and as a nonanimal tool of integrated testing strategies for REACH to screen compounds for excess toxicity.
The exposome encompasses an individual's exposure to exogenous chemicals, as well as endogenous chemicals that are produced or altered in response to external stressors. While the exposome concept has been established for human health, its principles can be extended to include broader ecological issues. The assessment of exposure is tightly interlinked with hazard assessment. Here, we explore if mechanistic understanding of the causal links between exposure and adverse effects on human health and the environment can be improved by integrating the exposome approach with the adverse outcome pathway (AOP) concept that structures and organizes the sequence of biological events from an initial molecular interaction of a chemical with a biological target to an adverse outcome. Complementing exposome research with the AOP concept may facilitate a mechanistic understanding of stress-induced adverse effects, examine the relative contributions from various components of the exposome, determine the primary risk drivers in complex mixtures, and promote an integrative assessment of chemical risks for both human and environmental health.
A recently introduced chemoassay has been used to determine second-order rate constants of the electrophile-nucleophile reaction of 15 α,β-unsaturated aldehydes with glutathione. The respective kGSH values vary for more than 3 orders of magnitude, and are within the range determined previously for 31 α,β-unsaturated ketones and esters. Structure-reactivity analyses yield distinct relationships between kGSH and structural features of the compounds. Moreover, increasing kGSH increases the aldehyde toxicity toward ciliates in terms of 48 h-EC50 values (effective concentration yielding 50% growth inhibition of Tetrahymena pyriformis within 48 h). A respective log-log regression equation including both kGSH and the octanol/water partition coefficient, Kow, yields a squared correlation coefficient of 0.96. Comparative analysis with corresponding data for 15 ketones and 16 esters reveals systematic differences between the three compound classes with regard to the individual contributions of hydrophobicity and electrophilic reactivity to aquatic toxicity. The former is particularly pronounced for aldehydes, while the ester toxicity is largely governed by reactivity, with ketones showing an intermediate pattern that is more similar to the one of esters than of aldehydes. It follows that within the Michael acceptor domain of α,β-unsaturated carbonyls, a distinction between aldehydes and nonaldehydic derivatives appears necessary when employing electrophilic reactivity as a component for the quantitative prediction of their reactive toxicity toward aquatic organisms.
Electrophilic substances can form covalent bonds to proteins and DNA, resulting in reactive toxicity and according diseases such as dermal or respiratory sensitization and mutagenicity. Employing site-specific quantum chemical parameters for quantifying the energy change associated with the gain or loss of electronic charge, two new local electrophilicity parameters are derived. Application to a set of 31 R,β-unsaturated carbonyl compounds and their experimental rates of reaction toward glutathione as a model nucleophile yields r 2 values up to 0.95, outperforming both the global electrophilicity and its earlier introduced local variant based on the condensed-to-atom Fukui function. A second data set demonstrates the suitability of the new reactivity parameters to also model Mayr's electrophilicity parameter, again superior to existing approaches. The results indicate the suitability of the new parameters to screen, without experimental investigation, organic compounds for their electrophilic reactivity in general, and for their potential to exert reactive toxicity in particular.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.