The molecular pathogenesis of salivary gland acinic cell carcinoma (AciCC) is poorly understood. The secretory Ca-binding phosphoprotein (SCPP) gene cluster at 4q13 encodes structurally related phosphoproteins of which some are specifically expressed at high levels in the salivary glands and constitute major components of saliva. Here we report on recurrent rearrangements [t(4;9)(q13;q31)] in AciCC that translocate active enhancer regions from the SCPP gene cluster to the region upstream of Nuclear Receptor Subfamily 4 Group A Member 3 (NR4A3) at 9q31. We show that NR4A3 is specifically upregulated in AciCCs, and that active chromatin regions and gene expression signatures in AciCCs are highly correlated with the NR4A3 transcription factor binding motif. Overexpression of NR4A3 in mouse salivary gland cells increases expression of known NR4A3 target genes and has a stimulatory functional effect on cell proliferation. We conclude that NR4A3 is upregulated through enhancer hijacking and has important oncogenic functions in AciCC.
Recent advances in cancer biology have emerged important roles for microRNAs (miRNAs) in regulating tumor responses. However, their function in mediating intercellular communication within the tumor microenvironment is thus far poorly explored. Here, we found miR-206 to be abrogated in human pancreatic ductal adenocarcinoma (PDAC) specimens and cell lines. We show that miR-206 directly targets the oncogenes KRAS and annexin a2 (ANXA2), thereby acting as tumor suppressor in PDAC cells by blocking cell cycle progression, cell proliferation, migration and invasion. Importantly, we identified miR-206 as a negative regulator of oncogenic KRAS-induced nuclear factor-κB transcriptional activity, resulting in a concomitant reduction of the expression and secretion of pro-angiogenic and pro-inflammatory factors including the cytokine interleukin-8, the chemokines (C-X-C motif) ligand 1 and (C–C motif) ligand 2, and the granulocyte macrophage colony-stimulating factor. We further show that miR-206 abrogates the expression and secretion of the potent pro-lymphangiogenic factor vascular endothelial growth factor C in pancreatic cancer cells through an NF-κB-independent mechanism. By using in vitro and in vivo approaches, we reveal that re-expression of miR-206 in PDAC cells is sufficient to inhibit tumor blood and lymphatic vessel formation, thus leading to a significant delay of tumor growth and progression. Taken together, our study sheds light onto the role of miR-206 as a pleiotropic modulator of different hallmarks of cancer, and as such raising the intriguing possibility that miR-206 may be an attractive candidate for miRNA-based anticancer therapies.
The tumor microenvironment (TME) has an impact on breast cancer progression by creating a pro-inflammatory milieu within the tumor. However, little is known about the roles of miRNAs in cells of the TME during this process. We identified six putative oncomiRs in a breast cancer dataset, all strongly correlating with poor overall patient survival. Out of the six candidates, miR-1246 was upregulated in aggressive breast cancer subtypes and expressed at highest levels in mesenchymal stem/stroma cells (MSCs). Functionally, miR-1246 led to a p65-dependent increase in transcription and release of pro-inflammatory mediators IL-6, CCL2 and CCL5 in MSCs, and increased NF-κB activity. The pro-inflammatory phenotype of miR-1246 in MSCs was independent of TNFα stimulations and mediated by direct targeting of the tumor-suppressors PRKAR1A and PPP2CB. In vitro recapitulation of the TME revealed increased Stat3 phosphorylation in breast epithelial (MCF10A) and cancer cells (SK-BR-3, MCF7, T47D) upon incubation with conditioned medium (CM) of MSCs overexpressing miR-1246. Additionally, this stimulation enhanced proliferation of MCF10A cells, increased migration of MDA-MB-231 cells and induced attraction of THP-1 monocytic cells. Our data shows that miR-1246 acts as both key-enhancer of pro-inflammatory responses in MSCs and putative oncomiR in breast cancer, suggesting its influence on cancer-related inflammation and breast cancer progression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.