This paper addresses the problem of motion imagery classification from electroencephalogram signals which related with many difficulties such on human state, measurement accuracy, etc. Artificial neural networks are a good tool to solve such kind of problems. Electroencephalogram is time series signals therefore, a Gramian Angular Fields conversion has been applied to convert it into images. GAF conversion was used for classification EEG with Convolutional Neural Network (CNN). GAF images are represented as a Gramian matrix where each element is the trigonometric sum between different time intervals. Grayscale images were applied for recognition to reduce numbers of neural network parameters and increase calculation speed. Images from each measuring channel were connected into one multi-channel image. This article reveals the possible usage GAF conversion of EEG signals to motion imagery recognition, which is beneficial in the applied fields, such as implement it in brain-computer interface.
Рассматривается система навигации пешехода, состоящая из двух бесплатформенных инерциальных навигационных систем, установленных на стопах. Для коррекции указанных систем используются условия нулевой скорости стопы в фазе опоры и ограниченности расстояния между стопами. В работе выясняются некоторые свойства расширенного фильтра Калмана, связанные с его состоятельностью. Показано, что состоятельность зависит от формы, в которой записываются уравнения в отклонениях.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.