Why do faces become easier to recognize with repeated exposure? Previous research has suggested that familiarity may induce a qualitative shift in visual processing from an independent analysis of individual facial features to an analysis that includes information about the relationships amongst features (Farah, Wilson, Drain, & Tanaka, 1998; Maurer, Grand, & Mondloch, 2002). We tested this idea by using a ‘summation-at-threshold’ technique (Gold, Mundy, & Tjan, 2012; Nandy & Tjan, 2008), in which an observer's ability to recognize each individual facial feature shown independently is used to predict their ability to recognize all of the features shown in combination. We find that, although people are better overall at recognizing familiar than unfamiliar faces, their ability to integrate information across features is similar for unfamiliar and highly familiar faces and is well predicted by their ability to recognize each of the facial features shown in isolation. These results are consistent with the idea that familiarity has a quantitative effect on the efficiency with which information is extracted from individual features, rather than qualitative effect on the process by which features are combined.
Background: fMRI provides spatial resolution that is unmatched by non-invasive neuroimaging techniques. Its temporal dynamics however are typically neglected due to the sluggishness of the hemodynamic signal. New Methods: We present temporal multivariate pattern analysis (tMVPA), a method for investigating the temporal evolution of neural representations in fMRI data, computed on single-trial BOLD time-courses, leveraging both spatial and temporal components of the fMRI signal. We implemented an expanding sliding window approach that allows identifying the time-window of an effect. Results: We demonstrate that tMVPA can successfully detect condition-specific multivariate modulations over time, in the absence of mean BOLD amplitude differences. Using Monte-Carlo simulations and synthetic data, we quantified family-wise error rate (FWER) and statistical power. Both at the group and single-subject levels, FWER was either at or significantly below 5%. We reached the desired power with 18 subjects and 12 trials for the group level, and with 14 trials in the single-subject scenario. Comparison with existing methods: We compare the tMVPA statistical evaluation to that of a linear support vector machine (SVM). SVM outperformed tMVPA with large N and trial numbers. Conversely, tMVPA, leveraging on single trials analyses, outperformed SVM in low N and trials and in a single-subject scenario. Conclusion: Recent evidence suggesting that the BOLD signal carries finer-grained temporal information than previously thought, advocates the need for analytical tools, such as tMVPA, tailored to investigate BOLD temporal dynamics. The comparable performance between tMVPA and SVM, a powerful and reliable tool for fMRI, supports the validity of our technique.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.