The Mediterranean lepidopteran pest Spodoptera littoralis is highly resistant to infection with the Autographa californica multiple nucleopolyhedrovirus (AcMNPV) via the oral route, but highly sensitive to infection with budded virus (BV) via the intrahaemocoelic route. To study the fate of AcMNPV infection in S. littoralis, vHSGFP, an AcMNPV recombinant that expresses the reporter green fluorescent protein gene under the control of the Drosophila heat-shock promoter, and high-resolution fluorescence microscopy were utilized. S. littoralis fourth-instar larvae infected orally with vHSGFP showed melanization and encapsulation of virus-infected tracheoblast cells serving the midgut columnar cells. At 72 h post-infection, the viral foci were removed during the moult clearing the infection. Thus, oral infection was restricted by immune responses to the midgut and midgut-associated tracheal cells. By contrast, injection of BV into the haemocoel resulted in successful infection of tracheoblasts, followed by spread of the virus through the tracheal epidermis to other tissues. However, in contrast to fully permissive infections where tracheoblasts and haemocytes are equally susceptible to infection, a severe limitation to vHSGFP infection of haemocytes was observed. To investigate the resistance of S. littoralis haemocytes to BV infection with AcMNPV, the larval immune system was suppressed with the Chelonus inanitus polydnavirus or a putatively immunosuppressive polydnavirus gene, P-vank-1. Both treatments increased the susceptibility of S. littoralis larvae to AcMNPV. It is concluded that the resistance of S. littoralis to AcMNPV infection involves both humoral and cellular immune responses that act at the gut and haemocyte levels. The results also support the hypothesis that tracheolar cells mediate establishment of systemic baculovirus infections in lepidopteran larvae. The finding that polydnaviruses and their encoded genes synergize baculovirus infection also provides an approach to dissecting the responses of the lepidopteran immune system to viruses by using specific polydnavirus immunosuppressive genes.
In this work, we perform an analysis of a channel for the UHF wave propagation in the city street. The street is modeled as a planar multislit waveguide with screens and slits distributed by a Poisson law. Statistical propagation characteristics in such a waveguide can be expressed in terms of multiple ray fields approaching the observer along a direct ray and the rays reflected by the waveguide walls. The corresponding average field and intensity distributions can be transformed into the sums of modelike solutions using the Poisson summation formula. Numerical examples are presented and compared with the experimental data.Index Terms-UHF radio propagation, urban areas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.