Abstract. We report on the stress-independent, tissue-specific expression of the heat-stress protein HSP17 in developing seeds of different plant species and on its intracellular localization. Though HSP17 expression during seed development seems to be a general phenomenon, the isoform patterns, the relative amounts in embryonic tissues and the intracellular localization show species-specific variations. In contrast to the results on the stressinduced protein forming large cytoplasmic aggregates (heat stress granules) the developmentally expressed HSP17 is mainly found in nuclei. But in addition, a considerable part is also detected in protein bodies of mature seeds of Lycopersicon esculentum and Vicia faba, but not of Zea mays. The mechanism of this transition into the vacuolar compartment remains to be investigated.
In recent years there has been growing interest in the question of how the particular topology of polymeric chains affects their overall dimensions and physical behavior. The majority of relevant studies are based on numerical simulation methods or analytical treatment; however, both these approaches depend on various assumptions and simplifications. Experimental verification is clearly needed but was hampered by practical difficulties in obtaining preparative amounts of knotted or catenated polymers with predefined topology and precisely set chain length. We introduce here an efficient method of production of various single-stranded DNA knots and catenanes that have the same global chain length. We also characterize electrophoretic migration of the produced single-stranded DNA knots and catenanes with increasing complexity.
RecA protein in bacteria and its eukaryotic homolog Rad51 protein are responsible for initiation of strand exchange between homologous DNA molecules. This process is crucial for homologous recombination, the repair of certain types of DNA damage and for the reinitiation of DNA replication on collapsed replication forks. We show here, using two different types of in vitro assays, that in the absence of ATP hydrolysis RecA-mediated strand exchange traverses small substitutional heterologies between the interacting DNAs, whereas small deletions or insertions block the ongoing strand exchange. We discuss evolutionary implications of RecA selectivity against insertions and deletions and propose a molecular mechanism by which RecA can exert this selectivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.