Two-dimensional monolayer transition metal dichalcogenide semiconductors are ideal building blocks for atomically thin, flexible optoelectronic and catalytic devices. Although challenging for two-dimensional systems, sub-diffraction optical microscopy provides a nanoscale material understanding that is vital for optimizing their optoelectronic properties. Here we use the ‘Campanile' nano-optical probe to spectroscopically image exciton recombination within monolayer MoS2 with sub-wavelength resolution (60 nm), at the length scale relevant to many critical optoelectronic processes. Synthetic monolayer MoS2 is found to be composed of two distinct optoelectronic regions: an interior, locally ordered but mesoscopically heterogeneous two-dimensional quantum well and an unexpected ∼300-nm wide, energetically disordered edge region. Further, grain boundaries are imaged with sufficient resolution to quantify local exciton-quenching phenomena, and complimentary nano-Auger microscopy reveals that the optically defective grain boundary and edge regions are sulfur deficient. The nanoscale structure–property relationships established here are critical for the interpretation of edge- and boundary-related phenomena and the development of next-generation two-dimensional optoelectronic devices.
Broadband optoelectronics such as artificial light harvesting technologies necessitate efficient and, ideally, tunable coupling of excited states over a wide range of energies. In monolayer MoS, a prototypical two-dimensional layered semiconductor, the excited state manifold spans the visible electromagnetic spectrum and is comprised of an interconnected network of excitonic and free-carrier excitations. Here, photoluminescence excitation spectroscopy is used to reveal the energetic and spatial dependence of broadband excited state coupling to the ground-state luminescent excitons of monolayer MoS. Photoexcitation of the direct band gap excitons is found to strengthen with increasing energy, demonstrating that interexcitonic coupling across the Brillouin zone is more efficient than previously reported, and thus bolstering the import and appeal of these materials for broadband optoelectronic applications. Narrow excitation resonances that are superimposed on the broadband photoexcitation spectrum are identified and coincide with the energetic positions of the higher-energy excitons and the electronic band gap as predicted by first-principles calculations. Identification of such features outlines a facile route to measure the optical and electronic band gaps and thus the exciton binding energy in the more sophisticated device architectures that are necessary for untangling the rich many-body phenomena and complex photophysics of these layered semiconductors. In as-grown materials, the excited states exhibit microscopic spatial variations that are characteristic of local carrier density fluctuations, similar to charge puddling phenomena in graphene. Such variations likely arise from substrate inhomogeneity and demonstrate the possibility to use substrate patterning to tune local carrier density and dynamically control excited states for designer optoelectronics.
Enzymes are able to maintain remarkably high selectivity toward their substrates while still retaining high catalytic rates. By immobilizing enzymes onto surfaces we can heterogenize these biological catalysts, making it practical to study, use, and combine them in an easily controlled system. In this work, we developed a platform that allows for the simple and oriented immobilization of proteins through DNA-directed immobilization. First, we modified a glass surface with single-stranded DNA. We then site-selectively attached the complementary DNA strand to the N-terminus of a protein. Both DNA modifications were carried out using an oxidative coupling strategy, and the DNA strands served as easily tunable and reversible chemical handles to hybridize the protein-DNA conjugates onto the surface. We have used the aldolase enzyme as a model protein to conduct our studies. We characterized each step of the protein immobilization process using fluorescent reporters as well as atomic force microscopy. We also conducted activity assays on the surfaces with DNA-linked aldolase to validate that, despite being modified with DNA and undergoing subsequent immobilization, the enzyme was still able to retain its catalytic activity and the surfaces were reusable in subsequent cycles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.