Relapse to cocaine-seeking behavior requires an increase in nucleus accumbens (NAc) core glutamate transmission. Decreased expression of glutamate type I transporter (GLT1), which is responsible for >90% of glutamate clearance, occurs in the core of rats withdrawn from cocaine self-administration, while treatment with ceftriaxone, a beta-lactam antibiotic previously shown to increase GLT1 expression and function in rodents, up-regulates GLT1 and attenuates cue-induced cocaine reinstatement. Here, we tested the effects of increasing GLT1 expression on cue-induced cocaine seeking in rats exposed to either limited (2 h/d) or extended (6 h/d) cocaine access followed by short (2 d) or long (45 d) withdrawal periods. Treatment with ceftriaxone (200 mg/kg, ip), up-regulated core GLT1 expression and attenuated cue-induced cocaine-seeking behavior only in rats exposed to long withdrawal periods, with a greater effect in the extended access condition. Pearson's correlation revealed GLT1 expression in core to be inversely correlated with cue-induced cocaine-seeking behavior. To localize the effects of GLT1 up-regulation within NAc, we tested the hypothesis that blockade of GLT1 in NAc core, but not shell, would reverse the ceftriaxone-mediated effect. Rats withdrawn from cocaine self-administration were treated with the same dose of ceftriaxone followed by intra-core or intra-shell infusions of one of two GLT1 blockers, dihydrokainic acid (500 μM) or DL-threo-beta-benzyloxyaspartate (250 μM), or saline. Our results reveal that the ceftriaxone-mediated attenuation of cue-induced cocaine reinstatement is reversed by GLT1 blockade in core, but not shell, and further implicate core GLT1 as a potential therapeutic target for cocaine relapse.
Cocaine addiction is characterized by compulsive drug seeking, including relapse after a period of withdrawal. The relapse response requires increased glutamate transmission in the nucleus accumbens (NAc). Consistent with this view, GLT1, the transporter responsible for >90% of glutamate uptake, is down-regulated in NAc after several days of withdrawal in rats previously trained to self-administer cocaine under limited access conditions (1–2 hr/day). Human addiction, however, appears to be better modeled by extending daily drug access (6–8 hr/day) and introducing long periods of withdrawal. Here, we determined the combined effects of manipulating cocaine access and withdrawal on GLT1 expression in NAc core and shell. Rats were trained to self-administer cocaine (0.25 mg per intravenous infusion) in daily limited or extended access sessions for 11 days followed by a period of short (1 day) or long (40–45 days) withdrawal. We found that although cocaine withdrawal decreases GLT1 expression in both core and shell, only in core is GLT1 down-regulation sensitive to both access and withdrawal. In fact, after long withdrawal, GLT1 in core is down-regulated more than in shell in either the limited or extended access condition. Thus, glutamate regulation in core appears to be a critical factor in the drug-seeking behavior that follows relatively long periods of cocaine withdrawal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.