Enhanced dopamine (DA) neurotransmission from the ventral tegmental area (VTA) to the ventral striatum is thought to drive drug self-administration and mediate positive reinforcement. We examined neuronal firing rates in slices of mouse midbrain following adolescent binge-like alcohol drinking and find that prior alcohol experience greatly enhanced the sensitivity to excitation by ethanol itself (10–50 mM) in a subset of ventral midbrain DA neurons located in the medial VTA. This enhanced response after drinking was not associated with alterations of firing rate or other measures of intrinsic excitability. In addition, the phenomenon appears to be specific to adolescent drinking, as mice that established a drinking preference only after the onset of adulthood showed no change in alcohol sensitivity. Here we demonstrate not only that drinking during adolescence induces enhanced alcohol sensitivity, but also that this DA neuronal response occurs over a range of alcohol concentrations associated with social drinking in humans.
The hippocampal CA2 region, an area important for social memory, has been suspected to play a role in temporal lobe epilepsy (TLE) because of its resistance to the degeneration observed in neighboring CA1 and CA3 regions in both human and rodent models of TLE. However, little is known about whether alterations in CA2 properties serve to promote seizure generation or propagation. Here we have used the pilocarpine-induced status epilepticus (PILO-SE) model of TLE to explore the role of CA2. Ex vivo electrophysiological recordings from acute hippocampal slices revealed a set of coordinated changes that enhance CA2 intrinsic excitability, reduce CA2 local inhibitory input, and increase CA2 excitatory output to its major CA1 synaptic target. Moreover, selective silencing of CA2 pyramidal cells using a chemogenetic approach caused a significant decrease in the frequency of spontaneous seizures. These findings provide the first evidence that CA2 actively contributes to TLE seizure activity and may thus be a promising therapeutic target.
A significant proportion of temporal lobe epilepsy (TLE) patients experience drug-resistant seizures associated with mesial temporal sclerosis, in which there is extensive cell loss in the hippocampal CA1 and CA3 subfields, with a relative sparing of dentate gyrus granule cells and the CA2 pyramidal neurons. A role for CA2 in seizure generation was suggested based on findings of a reduction in synaptic inhibition (Williamson & Spencer, 1994) and the presence of interictal-like spike activity in resected hippocampal tissue from TLE patients (Wittner et al., 2009). We recently found that in the pilocarpine-induced status epilepticus mouse model of TLE there was an increase in CA2 intrinsic excitability associated with a loss of CA2 synaptic inhibition. Furthermore, chemogenetic silencing of CA2 significantly reduced seizure frequency, consistent with a role of CA2 in promoting seizure generation and/or propagation (Whitebirch et al., 2022). In the present study we explored the basis of this inhibitory deficit using immunohistochemical and electrophysiological approaches. We report a widespread decrease in the density of pro-cholecystokinin-immunopositive interneurons and a functional impairment of cholecystokinin-expressing interneuron-mediated inhibition of CA2 pyramidal neurons. We also found a decrease in the density of CA2 parvalbumin-immunopositive interneurons and disruption to the pyramidal neuron-associated perisomatic perineuronal net in the CA2 subfield. These data reveal a set of pathological alterations that may disrupt inhibition of CA2 pyramidal neurons and their downstream targets in epileptic mice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.