Rad51 recombinase is the central player in homologous recombination, the faithful repair pathway for double-strand breaks and key event during meiosis. Rad51 forms nucleoprotein filaments on single-stranded DNA, exposed by a double-strand break.These filaments are responsible for homology search and strand invasion, which lead to homology-directed repair. Due to its central roles in DNA repair and genome stability, Rad51 is modulated by multiple factors and post-translational modifications.In this review, we summarize our current understanding of the dynamics of Rad51 filaments, the roles of other factors and their modes of action in modulating key stages of Rad51 filaments: formation, stability and disassembly.
Summary Melanoma is an aggressive skin cancer developing from melanocytes, frequently resulting in metastatic disease. Melanoma cells utilize amoeboid migration as mode of local invasion. Amoeboid invasion is characterized by rounded cell morphology and high actomyosin contractility driven by Rho GTPase signalling. Migrastatic drugs targeting actin polymerization and contractility are therefore a promising treatment option for metastatic melanoma. To predict amoeboid invasion and metastatic potential, biomarkers functionally linked to contractility pathways are needed. The glycoprotein podoplanin drives actomyosin contractility in lymphoid fibroblasts and is overexpressed in many cancers. We show that podoplanin enhances amoeboid invasion in melanoma. Podoplanin expression in murine melanoma drives rounded cell morphology, increasing motility, and invasion in vivo . Podoplanin expression is increased in a subset of dedifferentiated human melanoma, and in vitro is sufficient to upregulate melanoma-associated marker Pou3f2 /Brn2. Together, our data define podoplanin as a functional biomarker for dedifferentiated invasive melanoma and a promising migrastatic therapeutic target.
Melanoma is an aggressive skin cancer developing from melanocytes, frequently resulting in metastatic disease. Melanoma cells utilise amoeboid migration as mode of local invasion. Amoeboid invasion is characterized by rounded cell morphology and high actomyosin contractility driven by the RhoA signalling pathway. Migrastatic drugs targeting actin polymerization and contractility to inhibit invasion and metastasis are therefore a promising treatment option. To predict amoeboid invasion and metastatic potential, there is a need for biomarkers functionally linked to contractility pathways. The glycoprotein podoplanin drives actomyosin contractility in lymphoid fibroblasts, and is overexpressed in several cancer types. Here, we show that podoplanin enhances amoeboid invasion in melanoma. Expression of podoplanin in murine melanoma models drives rounded cell morphology, increasing motility and invasion in vivo. Podoplanin expression is upregulated in a subset of dedifferentiated human melanoma, and in vitro is sufficient to suppress melanogenesis and upregulate melanoma-associated markers Mitf and Pou3f2. Together, our data indicates that podoplanin is both a potential biomarker for dedifferentiated invasive melanoma and a promising migrastatic therapeutic target.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.