AimsTo investigate, for a given energy expenditure (EE) rise, the differential effects of glucagon infusion and cold exposure on brown adipose tissue (BAT) activation in humans.MethodsIndirect calorimetry and supraclavicular thermography was performed in 11 healthy male volunteers before and after: cold exposure; glucagon infusion (at 23 °C); and vehicle infusion (at 23 °C). All volunteers underwent 18F‐fluorodeoxyglucose (18F‐FDG) positron emission tomography (PET)/CT scanning with cold exposure. Subjects with cold‐induced BAT activation on 18F‐FDG PET/CT (n = 8) underwent a randomly allocated second 18F‐FDG PET/CT scan (at 23 °C), either with glucagon infusion (n = 4) or vehicle infusion (n = 4).ResultsWe observed that EE increased by 14% after cold exposure and by 15% after glucagon infusion (50 ng/kg/min; p < 0.05 vs control for both). Cold exposure produced an increase in neck temperature (+0.44 °C; p < 0.001 vs control), but glucagon infusion did not alter neck temperature. In subjects with a cold‐induced increase in the metabolic activity of supraclavicular BAT on 18F‐FDG PET/CT, a significant rise in the metabolic activity of BAT after glucagon infusion was not detected. Cold exposure increased sympathetic activation, as measured by circulating norepinephrine levels, but glucagon infusion did not.ConclusionsGlucagon increases EE by a similar magnitude compared with cold activation, but independently of BAT thermogenesis. This finding is of importance for the development of safe treatments for obesity through upregulation of EE.
Context:In vitro fertilization (IVF) treatment is an effective therapy for infertility, but can result in the potentially life-threatening complication, ovarian hyperstimulation syndrome (OHSS).Objective:This study aimed to investigate whether kisspeptin-54 can be used to effectively and safely trigger oocyte maturation in women undergoing IVF treatment at high risk of developing OHSS.Setting and Design:This was a phase 2, multi-dose, open-label, randomized clinical trial of 60 women at high risk of developing OHSS carried out during 2013–2014 at Hammersmith Hospital IVF unit, London, United Kingdom.Intervention:Following a standard recombinant FSH/GnRH antagonist protocol, patients were randomly assigned to receive a single injection of kisspeptin-54 to trigger oocyte maturation using an adaptive design for dose allocation (3.2 nmol/kg, n = 5; 6.4 nmol/kg, n = 20; 9.6 nmol/kg, n = 15; 12.8 nmol/kg, n = 20). Oocytes were retrieved 36 h after kisspeptin-54 administration, assessed for maturation, and fertilized by intracytoplasmic sperm injection with subsequent transfer of one or two embryos. Women were routinely screened for the development of OHSS.Main Outcome Measure:Oocyte maturation was measured by oocyte yield (percentage of mature oocytes retrieved from follicles ≥ 14 mm on ultrasound). Secondary outcomes include rates of OHSS and pregnancy.Results:Oocyte maturation occurred in 95% of women. Highest oocyte yield (121%) was observed following 12.8 nmol/kg kisspeptin-54, which was +69% (confidence interval, −16–153%) greater than following 3.2 nmol/kg. At all doses of kisspeptin-54, biochemical pregnancy, clinical pregnancy, and live birth rates per transfer (n = 51) were 63, 53, and 45%, respectively. Highest pregnancy rates were observed following 9.6 nmol/kg kisspeptin-54 (85, 77, and 62%, respectively). No woman developed moderate, severe, or critical OHSS.Conclusion:Kisspeptin-54 is a promising approach to effectively and safely trigger oocyte maturation in women undergoing IVF treatment at high risk of developing OHSS.
BACKGROUND. Sex, emotion, and reproduction are fundamental and tightly entwined aspects of human behavior. At a population level in humans, both the desire for sexual stimulation and the desire to bond with a partner are important precursors to reproduction. However, the relationships between these processes are incompletely understood. The limbic brain system has key roles in sexual and emotional behaviors, and is a likely candidate system for the integration of behavior with the hormonal reproductive axis. We investigated the effects of kisspeptin, a recently identified key reproductive hormone, on limbic brain activity and behavior.METHODS. Using a combination of functional neuroimaging and hormonal and psychometric analyses, we compared the effects of kisspeptin versus vehicle administration in 29 healthy heterosexual young men.RESULTS. We demonstrated that kisspeptin administration enhanced limbic brain activity specifically in response to sexual and couple-bonding stimuli. Furthermore, kisspeptin’s enhancement of limbic brain structures correlated with psychometric measures of reward, drive, mood, and sexual aversion, providing functional significance. In addition, kisspeptin administration attenuated negative mood.CONCLUSIONS. Collectively, our data provide evidence of an undescribed role for kisspeptin in integrating sexual and emotional brain processing with reproduction in humans. These results have important implications for our understanding of reproductive biology and are highly relevant to the current pharmacological development of kisspeptin as a potential therapeutic agent for patients with common disorders of reproductive function.FUNDING. National Institute for Health Research (NIHR), Wellcome Trust (Ref 080268), and the Medical Research Council (MRC).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.