Listening in an acoustically cluttered scene remains a difficult task for both machines and hearing-impaired listeners. Normal-hearing listeners accomplish this task with relative ease by segregating the scene into its constituent sound sources, then selecting and attending to a target source. An assistive listening device that mimics the biological mechanisms underlying this behavior may provide an effective solution for those with difficulty listening in acoustically cluttered environments (e.g., a cocktail party). Here, we present a binaural sound segregation algorithm based on a hierarchical network model of the auditory system. In the algorithm, binaural sound inputs first drive populations of neurons tuned to specific spatial locations and frequencies. The spiking response of neurons in the output layer are then reconstructed into audible waveforms via a novel reconstruction method. We evaluate the performance of the algorithm with a speech-on-speech intelligibility task in normal-hearing listeners. This two-microphone-input algorithm is shown to provide listeners with perceptual benefit similar to that of a 16-microphone acoustic beamformer. These results demonstrate the promise of this biologically inspired algorithm for enhancing selective listening in challenging multi-talker scenes.
Among nucleic acid diagnostic strategies, non-enzymatic tests are the most promising for application at the point of care in low-resource settings. They remain relatively under-utilized, however, due to inadequate sensitivity. Inspired by a recent demonstration of a highly-sensitive dumbbell DNA amplification strategy, we developed an automated, self-contained assay for detection of target DNA. In this new diagnostic platform, called the automated Pi-powered looping oligonucleotide transporter, magnetic beads capture the target DNA and are then loaded into a microfluidic reaction cassette along with the other reaction solutions. A stepper motor controls the motion of the cassette relative to an external magnetic field, which moves the magnetic beads through the reaction solutions automatically. Real-time fluorescence is used to measure the accumulation of dumbbells on the magnetic bead surface. Left-handed DNA dumbbells produce a distinct signal which reflects the level of non-specific amplification, acting as an internal control. The autoPiLOT assay detected as little as 5 fM target DNA, and was also successfully applied to the detection of S. mansoni DNA. The autoPiLOT design is a novel step forward in the development of a sensitive, user-friendly, low-resource, non-enzymatic diagnostic test.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.