The recent literature on high frequency financial data includes models that use the difference of two Poisson processes, and incorporate a Skellam distribution for forward prices. The exponential distribution of inter-arrival times in these models is not always supported by data. Fractional generalization of Poisson process, or fractional Poisson process, overcomes this limitation and has Mittag-Leffler distribution of inter-arrival times. This paper defines fractional Skellam processes via the time changes in Poisson and Skellam processes by an inverse of a standard stable subordinator. An application to high frequency financial data set is provided to illustrate the advantages of models based on fractional Skellam processes.MSC 2010 : Primary 60E05, 60G22; Secondary 60G51, 26A33
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.