BackgroundWith over 3,500 species encompassing a diverse range of morphologies and ecologies, snakes make up 36% of squamate diversity. Despite several attempts at estimating higher-level snake relationships and numerous assessments of generic- or species-level phylogenies, a large-scale species-level phylogeny solely focusing on snakes has not been completed. Here, we provide the largest-yet estimate of the snake tree of life using maximum likelihood on a supermatrix of 1745 taxa (1652 snake species + 7 outgroup taxa) and 9,523 base pairs from 10 loci (5 nuclear, 5 mitochondrial), including previously unsequenced genera (2) and species (61).ResultsIncreased taxon sampling resulted in a phylogeny with a new higher-level topology and corroborate many lower-level relationships, strengthened by high nodal support values (> 85%) down to the species level (73.69% of nodes). Although the majority of families and subfamilies were strongly supported as monophyletic with > 88% support values, some families and numerous genera were paraphyletic, primarily due to limited taxon and loci sampling leading to a sparse supermatrix and minimal sequence overlap between some closely-related taxa. With all rogue taxa and incertae sedis species eliminated, higher-level relationships and support values remained relatively unchanged, except in five problematic clades.ConclusionOur analyses resulted in new topologies at higher- and lower-levels; resolved several previous topological issues; established novel paraphyletic affiliations; designated a new subfamily, Ahaetuliinae, for the genera Ahaetulla, Chrysopelea, Dendrelaphis, and Dryophiops; and appointed Hemerophis (Coluber) zebrinus to a new genus, Mopanveldophis. Although we provide insight into some distinguished problematic nodes, at the deeper phylogenetic scale, resolution of these nodes may require sampling of more slowly-evolving nuclear genes.
Inferring the history of divergence between species in a framework that permits the presence of gene flow has been crucial for characterizing the “gray zone” of speciation, which is the period of time where lineages have diverged but have not yet achieved strict reproductive isolation. However, estimates of both divergence times and rates of gene flow often ignore spatial information, for example when considering the location and width of hybrid zones with respect to changes in the environment between lineages. Using population genomic data from the North American ratsnake complex (Pantherophis obsoletus), we connected phylogeographic estimates of lineage structure, migration, historical demography, and timing of divergence with hybrid zone dynamics. We examined the spatial context of diversification by linking migration and timing of divergence to the location and widths of hybrid zones. Artificial neural network approaches were applied to understand how landscape features and past climate have influenced population genetic structure among these lineages. We found that rates of migration between lineages were associated with the overall width of hybrid zones. Timing of divergence was not related to migration rate or hybrid zone width across species pairs but may be related to the number of alleles weakly introgressing through hybrid zones. This research underscores how incomplete reproductive isolation can be better understood by considering differential allelic introgression and the effects of historical and contemporary landscape features on the formation of lineages as well as overall genomic estimates of migration rates through time.
The southeastern Nearctic is a biodiversity hotspot that is also rich in cryptic species. Numerous hypotheses (e.g., vicariance, local adaptation, and Pleistocene speciation in glacial refugia) have been tested in an attempt to explain diversification and the observed pattern of extant biodiversity. However, previous phylogeographic studies have both supported and refuted these hypotheses. Therefore, while data support one or more of these diversification hypotheses, it is likely that taxa are forming within this region in species‐specific ways. Here, we generate a genomic data set for the cornsnakes (Pantherophis guttatus complex), which are widespread across this region, spanning both biogeographic barriers and climatic gradients. We use phylogeographic model selection combined with hindcast ecological niche models to determine regions of habitat stability through time. This combined approach suggests that numerous drivers of population differentiation explain the current diversity of this group of snakes. The Mississippi River caused initial speciation in this species complex, with more recent divergence events linked to adaptations to ecological heterogeneity and allopatric Pleistocene refugia. Lastly, we discuss the taxonomy of this group and suggest there may be additional cryptic species in need of formal recognition.
Several biogeographic barriers in the Eastern Nearctic appear to reduce gene flow among populations of many species in predictable ways, however these patterns used to infer process of divergence may be deceiving if alternative modes of diversification are not considered. By using a multilocus statistical phylogeographic approach to examine diversity within a North American snake, Lampropeltis calligaster, we find that mode and timing of speciation near the Mississippi River embayment and Peninsular Florida, two main biodiversity hotspots in eastern North America, challenge previously held notions of strict vicariance as the causal factor behind patterns of divergence seen among taxa at these locations. We found three species inhabiting distinct ecological niches with divergences dating to the mid-and early-Pleistocene with subsequently stable or increasing effective population sizes, further supporting the idea that the Pleistocene was an important driver of diversification in North America. Our results lead to a revised hypothesis that ecological divergence has occurred in this group across environments associated with the Mississippi River and at the Florida peninsula. Importantly, in their western distributions, we show that species divergence is associated with the ecological transition from distinct forested habitats to grasslands, rather than the nearby Mississippi River, a barrier often implicated for many other organisms. Additionally, we stress the importance of examining each delimited lineage with respect to conservation, since ecological niche models suggest that by the end of the century changes in climate may negatively alter habitat suitability and, barring adaptation, substantially reduce the suitable range of two of the three species we identified.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.