The paper introduces a finite element method for the Navier-Stokes equations of incompressible viscous fluid in a time-dependent domain. The method is based on a quasi-Lagrangian formulation of the problem and handling the geometry in a time-explicit way. We prove that numerical solution satisfies a discrete analogue of the fundamental energy estimate. This stability estimate does not require a CFL time-step restriction. The method is further applied to simulation of a flow in a model of the left ventricle of a human heart, where the ventricle wall dynamics is reconstructed from a sequence of contrast enhanced Computed Tomography images.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.