A central duty of the laboratory is to inform clinicians about the availability and usefulness of laboratory testing. In this report, we describe a new class of laboratory middleware that connects the traditional clinical laboratory information system with the rest of the enterprise, facilitating information flow about testing services. We demonstrate the value of this approach in efficiently supporting an inpatient order entry application. We also show that order entry monitoring and iterative middleware updates can enhance ordering efficiency and promote improved ordering practices. Furthermore, we demonstrate the value of algorithmic approaches to improve the accuracy and completeness of laboratory test searches. We conclude with a discussion of design recommendations for middleware applications and discuss the potential role of middleware as a sharable, centralized repository of laboratory test information.
The paper based on the analysis of the working conditions of railway transport shows that, ceteris paribus, an increase in actual durability and mean time before failure of rolling stock units is obtained through maintenance of wheelsets, especially during logistic processes on nonmechanized humps. One of the main causes for the service life decrease of wheelsets is brake damage. To eliminate such brake damage on highways, on-board braking dis-tance regulators mounted on the locomotive are used. In the hump yards, using such systems is not possible, since under marshalling, cars are detached from the locomotive. In this regard, an industrial challenge turns up to design a similar in purpose braking distance regulator for humps through skidding. To solve this problem, we developed a method of controlling the speed of cars to be sorted, which complements the widely used technology of the shoe braking and avoids the formation of one-way sliders. The paper presents a skid adjuster, which excludes brake damage to the rolling stock wheels by the slides on the humps using the shoe braking techniques. The motion equation of the rolling stock equipped with a skid adjuster on the hump tracks is developed. In the result of this study, an equation of car motion in the system of “rolling stock Hughes regulator way” allowing to enter the working elements of Hughes controller to an existing and debugged algorithm of any slides with minimal change it.
Abstracts. The demand for more sustainable agriculture promotes the need for friction parts and components with a high durability and better performance. Widely known that absence of the constant and smooth lubricant supply into the working system is the main cause of the decline in reliability. As a result, most of the time the machines work in conditions of a lubricant deficiency. Thus, the development and implementation of the direct adaptive control methods into the friction nodes could be of great importance. Moreover, this approach increases reliability and simplifies the industrial application of the similar systems.
The efficiency and competitiveness of transport, other things being equal, directly depends on improving the safety of the transportation process, which in turn depends on the actual technical condition and durability of the rolling stock. To solve problems of this type, it is proposed a set of solutions is proposed that increases the durability of especially critical friction units that affect the safety of operation of technical systems used in loading and unloading and transport processes. The proposed solutions are characterized by manufacturability, low resource consumption and versatility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.